

1

effective objects

ProLatTM
Coordinate Conversion Toolkit

Includes:

ProLat for .NET pure managed library

User’s Manual

Version 5.24

Updated 2020 December 30

2

Copyright 2013-2019 Effective Objects. All rights reserved.

No part of this manual, including the products and software described in it, may be reproduced in
any manner whatsoever, except by the purchaser for backup purposes, without the written
permission of Effective Objects.

Effective Objects and ProLat for .Net are trademarks of Effective Objects. Products and
corporate names appearing in this manual may or may not be registered trademarks or copyrights
of their respective companies, and are used only for identification or explanation and to the
owners’ benefit, without intent to infringe.

License Agreement

Please see the file ProLatLicense.pdf for the license agreement for this software. If you do not
agree with the license agreement, please do not use this software product.

3

Table of Contents

Introduction ... 5
Getting Started .. 5
Defining Coordinate Systems ... 6

Geodesy Coordinate System Database ... 6
Geodesy functions to define a coordinate system ... 6
Groups ... 7
Systems ... 8
Datums .. 9
Units .. 9

Using Proj.4 Compatible Definition Strings ... 10
Projections... 11

Customizing the Coordinate System Database ... 12
How Does ProLat Internally Perform Conversions? .. 12

What is a Coordinate System? .. 13
What is a Datum? .. 13

Other Datum Conversion Methods ... 15
What is a Projection? .. 16

The Universal Transverse Mercator (UTM) Coordinate System ... 17
State Plane Coordinate System (SPCS) .. 19
The Geocentric ECEF XYZ Coordinate System .. 21

Redistributable Files ... 22
Programming in Windows .Net Environments ... 23

Steps for Visual Studio and Windows 8 ... 23
Windows Phone 7 and 8 ... 23

.Net Examples ... 24
Using ProLat for .Net functions .. 24

.Net Class and Function Reference ... 25
Class CoordSys ... 25
Class DMS - Text Coordinate Parsing Class .. 26

Testing and Verification ... 26
CoordSys Method Reference .. 27

GetCS .. 27
Transform .. 29
.Net Examples: .. 30
Win32 Examples: .. 30
Android Examples: ... 30
CoordSys.AddFileLocationAssembly .. 32
CoordSys.AddFileLocationFolder .. 33
CoordSys.GetErrNo .. 34
CoordSys.GetGroups and related functions .. 35
CoordSys.GetProjNames and related functions .. 35
For Win32 ... 35
EllipsoidInverse .. 36
EllipsoidForward... 38
ScaleConvergence ... 39
GetDMS .. 40
GetDMSSingle .. 43
GetLat ... 44

4

GetLon .. 44
MGRS Military Grid Reference System Functions .. 45

Programming in Windows 32/64 Native Environments ... 47
Setup Instructions.. 47

Steps for using ProLat in VB6, Excel, Word, and Access .. 47
Steps for using ProLat in C++ .. 47

Function Reference ... 48
ProLatDefineGeodesy and ProLatDefineDef ... 48
ProLatTransform ... 50
ProLatClose... 51
ProLatGetErrNo .. 51
ProLatStrErr .. 51
ProLatSetFilePath ... 51
ProLatEllipsoidInverse ... 52
ProLatScaleConvergence .. 53
ProLatGetDMS ... 54
ProLatGetDMSSingle ... 57
ProLatGetLat... 58
ProLatGetLon ... 58
ProLatDMSFormat ... 59
Reading and Writing PRJ and WKT files ... 61
ProLatConvertPRJToStr ... 61
ProLatConvertStrToESRI ... 62
ProLatConvertStrToWKT... 62
ProLatConvertHandleToStr .. 63

ProLatX ActiveX DLL ... 64
List of ProLatX Methods and Properties .. 65
Creating DMS Values From Decimal Values ... 66

Custom Coordinate Systems ... 67
Example Coordinate System Definition ... 67
Required Parameters ... 67
Parameter List ... 67
Projection Descriptions ... 76

HARN and HPGN... 79
Troubleshooting .. 81
License .. 82
References ... 83

5

Introduction

ProLat provides a complete managed coordinate conversion library for .Net, Win32/64, and
Android environments. The coordinate conversion results are carefully tested against
government sources so you are ensured of the most accurate results possible.

- Pure managed code for C# .Net, VB .Net, C++/CLI. Works with Windows 7, 8, RT, and
Window Phone 7 and 8

- Native code for Win32 and Android. Works with VB6, Visual Studio, and Android Java.

- Easy to define coordinate systems

- One step translation between any of the supported coordinate systems

- Datum to datum conversions (Over 300 datums including HARN)

- UTM, State Plane, Geocentric (ECEF/XYZ), and many more projections

- Custom coordinate systems and projections with unlimited parameters

- Great Earth distance and direction calculations

- Scale and angle of convergence calculations for all projections

- Well documented with examples in this manual

Getting Started
 Install the software by uncompressing the zip file into an empty folder such as C:\ProLat,

or an empty user folder.
 Try the examples located in the folder for the desired platform.
 Add the functions to your program or use an example as a starting point
 Test carefully
 Ensure that the functions can find the supporting files when distributing the software

It is suggested to read the section on “Defining Coordinate Systems” first. Next, jump to the
chapters for your specific platform for examples and function documentation.

The different platforms have very similar functionality, but the syntax and function names may
vary. The general coordinate conversion information applies to all platforms.

6

Defining Coordinate Systems
A coordinate system in ProLat is a set of parameters that defines the essentials needed to know
about a set of coordinate data points in order to convert them to another coordinate system.
Generally it is easy to define a coordinate system, and the beauty is that ProLat can figure out
exactly what is needed to convert between any two given coordinate systems.

In ProLat there are two ways to define a coordinate system.

1. Geodesy coordinate system database with four parameters: Group, System, Datum,
and Units. This method offers easy selection and is self descriptive. It ensures that all
elements of a coordinate system are specified. It is used by professionals in many fields.

An example: UTM, UTM-15N, WGS84, METERS

2. Proj.4 parameter definition Use this method for existing Proj.4 definitions, or for
creating custom coordinate systems. It is flexible, although it may be harder to learn.

An example: proj=utm zone=15 datum=WGS84

The following sections provide more details of defining coordinate systems.

Geodesy Coordinate System Database

ProLat introduces a professional Geodesy database of commonly used coordinate systems. It is
likely to contain the desired coordinate system such as UTM, State Plane, etc. It also has a
comprehensive selection of datums and units. It may be customized to include new coordinate
systems. For info, see the section titled “Customizing the Coordinate System Database.”

To specify a coordinate system, four simple strings are needed: 1. Group (UTM etc.); 2. System
within the group (UTM-17N etc.); 3. Datum (WGS84 etc.); and 4. Units (METERS etc.).

See the Examples folder for sample calculators that show how to load the group and system lists.

Geodesy functions to define a coordinate system

By using the group, system, datum, and units parameters, a complete coordinate system may be
defined. ProLat can convert any valid coordinate system to any other coordinate system with the
function, CoordSys.Transform().

ProLat for .Net

C#:
CoordSys latlong = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
CoordSys utm17 = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS");

VB.Net:
Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS")
Dim utm17 as CoordSys = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS")

C++/CLI:
CoordSys^ latlong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
CoordSys^ utm17 = CoordSys::GetCS("UTM", "UTM-17N", "WGS84", "METERS");

7

ProLat for Win32
C++ / VB6 / etc.
LL = ProLatDefineGeodesy("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

ProLat for Android
Java
CoordSys latlong = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

Groups

A complete list of groups can be found with the function CoordSys.GetGroups() or .

 LAT_LONG Geodetic Latitude / Longitude
 UTM Universal Transverse Mercator
 US_SPC27 US State Plane 1927
 US_SPC83 US State Plane 1983
 ECEF XYZ Cartesian ECEF
 Argentine_Coordinate_Systems Argentine Coordinate Systems
 AUSTRALIA Australian AMG Coordinate Systems
 Australian_ISG Australian ISG Coordinate Systems
 Australian_MGA_Coordinate_System Australian MGA Coordinate System
 Austrian_Coordinate_Systems Austrian Coordinate Systems
 Bahrainian_Coordinate_Systems Bahrainian Coordinate Systems
 BELGIAN Belgian Coordinate Systems
 BORNEO Borneo RSO Grids
 BRITISH British Coordinate Systems
 Chad_Coordinate_Systems Chad Coordinate Systems
 COLOMBIA Colombia Coordinate Systems
 Egyptian_Coordinate_Systems Egyptian Coordinate Systems
 FRANCE French Coordinate Systems
 Ghanaian_Coordinate_Systems Ghanaian Coordinate Systems
 GK_PULKOVO Gauss Kruger (Pulkovo 1942) Coordinate Systems
 GK3TM Gauss Kruger 3TM Coordinate Systems
 GK6TM Gauss Kruger 6TM Coordinate Systems
 Hungarian_Coordinate_Systems Hungarian Coordinate Systems
 Indian_Coordinate_Systems Indian Coordinate Systems
 Iraq_Coordinate_Systems Iraq Coordinate Systems
 Krovak Krovak Oblique Conic Conformal
 Libyan_Coordinate_Systems Libyal Coordinate Syatems
 Malaysian_RSO_Grids Malaysian RSO Grids
 New_Zealand_Transverse_Mercator New Zealand TM Coord. Sys.
 NEWZEALAND New Zealand Coordinate Systems
 Nigerian_Systems Nigerian Systems
 NZMG New Zealand Map Grid
 Peruvian_Systems Peruvian Systems
 QATAR Qatar Coordinate Systems
 QMTM Quebec Modified TM Coordinate Systems
 QMTM_NAD27 Quebec Modified TM NAD27
 ROMANIAN Romanian Coordinate Systems
 Netherlands_Systems Netherlands Coordinate Systems
 Swiss_Coordinate_Systems Swiss_Coordinate_Systems
 BLM GOM
 MICHIGAN_OLD Michigan Older NAD27 TM

8

Systems

For each group there is a list of systems in the group. Use the function
CoordSys.GetSystems(group) to get a list of systems within a group.

For example the group, UTM, has 60 zones and the State Plane group, US_SPC83, has a list of
states and zone systems. Here are a few samples of common groups and systems.

Group: LAT_LONG (Standard latitude/longitude degrees)
Systems: LAT-LONG

Group: UTM (Universal Transverse Mercator)
Systems: UTM-01N
 UTM-02N
 …
 UTM-01S
 UTM-02S
 …

Group: US_SPC83 (State Plane Coordinate System NAD83)
Systems:
AK83-1 Alaska Zone 1
AK83-10 Alaska Zone 10
AK83-2 Alaska Zone 2
AK83-3 Alaska Zone 3
AK83-4 Alaska Zone 4
AK83-5 Alaska Zone 5
AK83-6 Alaska Zone 6
AK83-7 Alaska Zone 7
AK83-8 Alaska Zone 8
AK83-9 Alaska Zone 9
AL83-E Alabama Eastern Zone
AL83-W Alabama Western Zone
AR83-N Arkansas Northern Zone
AR83-S Arkansas Southern Zone
AZ83-C Arizona Central Zone
AZ83-E Arizona Eastern Zone
AZ83-W Arizona Western Zone
CA83-1 California Zone I
CA83-2 California Zone II
CA83-3 California Zone III
CA83-4 California Zone IV
CA83-5 California Zone V
CA83-6 California Zone VI
CO83-C Colorado Central Zone
CO83-N Colorado Northern Zone
CO83-S Colorado Southern Zone
CT83 Connecticut
DE83 Delaware
FL83-E Florida Eastern Zone
FL83-N Florida Northern Zone
FL83-W Florida Western Zone
GA83-E Georgia Eastern Zone
GA83-W Georgia Western Zone
HI83-1 Hawaii Zone 1
HI83-2 Hawaii Zone 2
HI83-3 Hawaii Zone 3
HI83-4 Hawaii Zone 4
HI83-5 Hawaii Zone 5
IA83-E Indiana Eastern Zone
IA83-W Indiana Western Zone
ID83-C Idaho Central Zone
ID83-E Idaho Eastern Zone
ID83-W Idaho Western Zone
IL83-E Illinois Eastern Zone
IL83-W Illinois Western Zone
IO83-N Iowa Northern Zone
IO83-S Iowa Southern Zone

KS83-N Kansas Northern Zone
KS83-S Kansas Southern Zone
KY83 Kentucky Single Zone
KY83-N Kentucky Northern Zone
KY83-S Kentucky Southern Zone
LA83-N Louisiana Northern Zone
LA83-O Louisiana Offshore Zone
LA83-S Louisiana Southern Zone
MA83-I Massachusetts Island
MA83-M Massachusetts Mainland
MD83 Maryland
ME83-E Maine Eastern Zone
ME83-W Maine Western Zone
MI83-C Michigan Central Zone
MI83-N Michigan Northern Zone
MI83-S Michigan Southern Zone
MN83-C Minnesota Central Zone
MN83-N Minnesota Northern Zone
MN83-S Minnesota South Zone
MO83-C Missouri Central Zone
MO83-E Missouri Eastern Zone
MO83-W Missouri Western Zone
MS83-E Mississippi Eastern
MS83-W Mississippi Western Zone
MT83 Montana
NC83 North Carolina
ND83-N North Dakota Northern Zone
ND83-S North Dakota Southern Zone
NE83 Nebraska
NH83 New Hampshire
NJ83 New Jersey
NM83-C New Mexico Central Zone
NM83-E New Mexico Eastern Zone
NM83-W New Mexico Western Zone
NV83-C Nevada Central Zone
NV83-E Nevada Eastern Zone
NV83-W Nevada Western Zone
NY83-C New York Central Zone
NY83-E New York Eastern Zone
NY83-I New York Long Island Zone
NY83-W New York Western Zone
OH83-N Ohio Northern Zone
OH83-S Ohio Southern Zone
OK83-N Oklahoma Northern Zone
OK83-S Oklahoma Southern Zone
OR83-N Oregon Northern Zone
OR83-S Oregon Southern Zone

9

PA83-N Pennsylvania Northern Zone
PA83-S Pennsylvania Southern
PRVI83 Puerto Rico, Virgin Islnds
RI83 Rhode Island
SC83 South Carolina
SD83-N South Dakota Northern Zone
SD83-S South Dakota Southern Zone
TN83 Tennessee
TX83-C Texas Central Zone
TX83-N Texas Northern Zone
TX83-NC Texas North Central Zone
TX83-S Texas Southern Zone
TX83-SC Texas South Central Zone
UT83-C Utah Central Zone
UT83-N Utah Northern Zone
UT83-S Utah Southern Zone

VA83-N Virginia Northern Zone
VA83-S Virginia Southern Zone
VT83 Vermont
WA83-N Washington Northern Zone
WA83-S Washington Southern Zone
WI83-C Wisconsin Central Zone
WI83-N Wisconsin Northern Zone
WI83-S Wisconsin Southern Zone
WV83-N West Virginia Northern
WV83-S West Virginia Southern
WY83-E Wyoming Eastern Zone
WY83-EC Wyoming East Central Zone
WY83-W Wyoming Western Zone
WY83-WC Wyoming West Central Zone

For other groups use CoordSys.GetSystems(group) to get a list of systems.

Datums

Over 300 of the most commonly used datums are provided. Use the function
CoordSys.GetDatums() to get a list of available datums. Unlimited additional datums can be
created with any ellipsoid and conversion method. ProLat for .Net provides advanced datum
shifting capabilities with grid shifts and 3,7 and 10 parameter Molodensky-Badekas methods.

A few common datums include WGS84, NAD27, NAD83, NAD83-ALABAMA-HARN, and
many others.

Units

Use the function CoordSys.GetUnits() to get a list of available units.

Unit Description

BENOIT CHAINS Benoit's Chain
BENOIT LINKS Benoit's Link
CENTIMETERS Centimeter
CHAINS Chains
CLARKE CHAINS Clarke's Chains
CLARKE FEET Clarke's Feet
DECIMETERS Decimeter
FEET Interntnl Feet
GUNTER CHAIN Gunter's Chain
GUNTER LINKS Gunter's Link
INCHES Interntnl Inch
INDIAN YARD Indian Yard
INTERNATIONAL MILES Interntnl Mile
KILOMETERS Kilometer
LINKS Links
METERS Meter

Unit Description

MILLIMETERS Millimeter
NAUTICAL MILES International
 Nautical Mile
PERCH Perch
POLE Pole
RODS Rod
SEARS CHAINS Sear's Chain
SEARS LINKS Sear's Link
SEARS YARD Sear's Yard
TENTHFEET 1/10 Feet
TENTHUSFEET 1/10 USFEET
U.S. SURVEY MILES U.S. Survey Mile
USFEET US Survey Feet
USINCHES U.S. Survey Inch
YARDS International
Yard

10

Using Proj.4 Compatible Definition Strings

ProLat for .Net

C#:
CoordSys latlong = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);

VB:
Dim latlong As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”)

ProLat for Win32

C++ / VB6 / etc.
LL = ProLatDefineDef(+proj=utm +zone=17 +datum=WGS84);

ProLat for Android
Java
CoordSys latlong = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);

Note that in ProLat the plus sign (+) before each parameter is optional.

Defining a coordinate system with a Proj.4 string requires three basic elements.

1. A “proj=” parameter and relevant parameters for that projection. Some projections such
as “proj=latlong” and “proj=geocent” have no additional parameters. Most projections,
however, have lat_0=, lon_0=, x_0=, y=0 to specify central latitude, central longitude,
and an offset. See additional parameter information near the end of this manual.

2. Datum information. A datum contains the ellipsoid, the method used to convert to the
WGS84 datum, and the position of zero degrees. An ellipsoid defines the shape of the
earth that is used. Coordinates in one datum will land in a different place than the same
coordinates in a different datum. It is possible to convert coordinates in one datum to a
different datum using either a formula (towgs84= parameters) or with a grid lookup file
(nadgrids= parameter). The zero degree position defaults to Greenwich. Some
coordinates have a different zero position specified with the “pm=” parameter.

3. The units. For latitude/longitude coordinates, the units default to degrees. For XY
projections, the units default to meters. Use the “units=” or “to_meter=” parameter to
specify the units.

In summary, make sure the coordinate system specifies the projection, datum, and units.

11

Projections

ProLat includes the following projections for use in a Proj.4 definition. This represents a
comprehensive list of projections. If the needed projection is not available, contact Effective
Objects.

aea Albers Equal Area
aeqd Azimuthal Equidistant
airy Airy
aitoff Aitoff
apian Apian Globular I
august August Epicycloidal
bacon Bacon Globular
bipc Bipolar conic of western hemisphere
boggs Boggs Eumorphic
bonne Bonne (Werner lat_1=90)
cass Cassini
cc Central Cylindrical
cea Equal Area Cylindrical
chamb Chamberlin Trimetric
collg Collignon
crast Craster Parabolic
denoy Denoyer Semi-Elliptical
eck1 Eckert I
eck2 Eckert II
eck3 Eckert III
eck4 Eckert IV
eck5 Eckert V
eck6 Eckert VI
eqc Equidistant Cylindrical
eqdc Equidistant Conic
fahey Fahey
fouc_s Foucaut Sinusoidal
gall Gall Stereographic
geocent Geocentric, ECEF, XYZ
geos Geostationary Satellite View
gins8 Ginsburg VIII (TsNIIGAiK)
gn_sinu General Sinusoidal Series
gnom Gnomonic
goode Goode Homolosine
gs48 Mod. Stererographics of 48 U.S.
gs50 Mod. Stererographics of 50 U.S.
gstmerc Gauss-Schreiber Transverse Mercator

(aka Gauss-Laborde Reunion)
hammer Hammer & Eckert-Greifendorff
hatano Hatano Asymmetrical Equal Area
kav5 Kavraisky V
kav7 Kavraisky VII
krovak Krovak projection
latlong Latitude/Longitude (non-projected)
 (latlon, lonlat, longlat)
lcc Lambert Conformal Conic
lcca Lambert Conformal Conic

Alternative
leac Lambert Equal Area

lee_os Lee Oblated Stereographic
loxim Loximuthal
lsat Space oblique for LANDSAT
mbt_s McBryde-Thomas Flat-Polar Sine

(No. 1)
mbt_fps McBryde-Thomas Flat-Pole Sine

(No. 2)
mbtfpp McBride-Thomas Flat-Polar

Parabolic
mbtfpq McBryde-Thomas Flat-Polar Quartic
mbtfps McBryde-Thomas Flat-Polar

Sinusoidal
merc Mercator
mil_os Miller Oblated Stereographic
mill Miller Cylindrical
moll Mollweide
murd1 Murdoch I
murd2 Murdoch II
murd3 Murdoch II
natearth Natural Earth
nell Nell
nell_h Nell-Hammer
nicol Nicolosi Globular
nsper Near-sided perspective
nzmg New Zealand Map Grid
ob_tran General Oblique Transformation
ocea Oblique Cylindrical Equal Area
oea Oblated Equal Area
omerc Oblique Mercator
ortel Ortelius Oval
ortho Orthographic
pconic Perspective Conic
poly Polyconic (American)
putp1 Putnins P1
putp2 Putnins P2
putp3 Putnins P3
putp3p Putnins P3’
putp4 Putnins P4
putp4p Putnins P4’
putp5 Putnins P5
putp5p Putnins P5’
putp6 Putnins P6
putp6p Putnins P6’
qua_aut Quartic Authalic
rhealpix rHEALPix
robin Robinson
rouss Roussilhe Stereographic
rpoly Rectangular Polyconic

12

sinu Sinusoidal
somerc Swiss Oblique Mercator
stere Stereographic
sterea Oblique Stereographic Alternative
tcc Transverse Central Cylindrical
tcea Transverse Cylindrical Equal Area
tissot Tissot
tmerc Transverse Mercator
tpeqd Two Point Equidistant
tpers Tilted perspective
ups Universal Polar Stereographic
urm5 Urmaev V
urmfps Urmaev Flat-Polar Sinusoidal
utm Universal Transverse Mercator
vandg van der Grinten I

vandg2 van der Grinten II
vandg3 van der Grinten III
vandg4 van der Grinten IV
vitk1 Vitkovsky I
wag1 Wagner I (Kavraisky VI)
wag2 Wagner II
wag3 Wagner III
wag4 Wagner IV
wag5 Wagner V
wag6 Wagner VI
weren Werenskiold I
wink1 Winkel I
wink2 Winkel II
wintri Winkel Tripel

Customizing the Coordinate System Database

It is possible to add your own special coordinate system definitions to the standard ProLat
definitions. Use the following steps:

1. Look in the geodesy folder for Group.txt, Datums.txt, Units.txt, etc. The
ProlatWindows.dll file includes a copy of all these files internally. However, you can tell
ProLat to use an external copy by calling the function
CoordSys.AddFileLocationFolder(foldername). Make a copy of the geodesy folder that
you can customize. Then pass the path to this folder to AddFileLocationFolder(). Now
ProLat will use the definitions from the folder instead of the internal data.

2. Edit Group.txt. Notice that each line corresponds to a system file with the Name field
with .txt extension. For example, the UTM system has a corresponding UTM.txt file.
You can add a new system to Group.txt by copying an existing line and changing the
strings. If you do this to add a new system, be sure to create a corresponding .txt file. For
example, copy AUTRALIA.txt to MySystems.txt and edit the new file with your own
definitions.
You don’t have to create a new system in Group.txt. It is ok to edit one of the system files
such as AUSTRALIA.txt and edit/add definitions there. It depends on what works best
for your application.

3. Add new datums by editing Datums.txt. Add new ellipsoids by editing Ellipsoids.txt.
4. ProLat creates a coordinate definition by combining the sub definitions from the selected

system, the Datum/ellipsoid, and the units. This is useful to know, for example, if your
custom definition needs a special datum. In this case add the special datum to Datums.txt
instead of directly in MySystems.txt.

How Does ProLat Internally Perform Conversions?
Internally, ProLat uses a well defined conversion method to convert between any two coordinate
systems. It is not necessary to know following details to use ProLat, but it may help in
understanding how it works.

1. Scale units to meters (for most projections).
2. Convert the coordinate from the source projection to latitude/longitude

13

3. If the destination coordinate system is in a different datum, perform a datum shift.
a. NAD27 to NAD83/WGS84 uses NADCON grid shift tables
b. Other datums use a set of towgs84 (pronounced “To WGS84”) parameters to

convert to WGS84 and then to the destination datum. (This process involves an
intermediate conversion to geocentric xyz coordinates.)

4. Project the new latitude/longitude to the destination projection.
5. Scale to the destination units.

What is a Coordinate System?

A coordinate system consists of a set of parameters that defines how a coordinate in space is
produced. For example, a GPS unit calculates an XYZ position relative to the center of the
Earth. Then, the GPS converts that value to a latitude, longitude, and height based on an
estimate of the size and shape of the earth called an ellipsoid. A surveyor may need to convert
the latitude longitude coordinate to the State Plane Coordinate system, which uses either a
Transverse Mercator projection or a Lambert Conformal Conic projection.

If we analyze the steps in the preceding paragraph, a coordinate system needs to know the
ellipsoid parameters and the projection parameters. If the ellipsoid is not the WGS84 ellipsoid,
there is one more parameter needed to define how to convert to the WGS84 ellipsoid. The
conversion to another ellipsoid is done with a datum grid shift file or with a mathematical
translation.

By having the ellipsoid, projection, and WGS84 translation parameters a complete coordinate
system is formed. See the examples of coordinate systems in various sections of this manual.

What is a Datum?

A datum consists of a a set of parameters that define how is defined by a set of constants
specifying the coordinate system used for geodetic control, i.e., for calculating the coordinates of
points on the Earth.1 With ProLat, it is not necessary to know the specific parameters of a
datum. It is only necessary to determine the datum name used for the available coordinate points
and specify that name in the GetCS() method. It is possible to use raw parameters if desired.

The function CoordSys.GetDatums() produces a list of available datum names. ProLat also can
use the Proj.4 definitions as NAD27, NAD83, WGS84.

Using a datum name, ProLat looks up the specific parameters that define the datum. A datum
has constants for an ellipsoid that defines the shape of Earth considering it closely matches an
ellipsoid rather than a perfect sphere. An ellipsoid is usually specified by the semi-major axis,
“a=”, and the reciprocal flattening, “rf=”. The standard 0 degree of most datums is at
Greenwich. A datum that starts elsewhere can use the “pm=” parameter. A datum also specifies
how to convert to the universal reference datum of WGS84 using the “nadgrids=” parameter or
the “towgs84=” parameter. See documentation for these parameters near the end of the manual.

14

To summarize, the ellipsoid and the details of how to convert to the WGS84 datum are what
defines a datum.

Why is there more than one datum? The use of satellites and other technological improvements
in surveying have allowed refinement in the knowledge of the shape of the Earth. Along with
these refinements came the process of standardizing the definition of the approximating ellipsoid
and establishing an international reference datum. Prior to this, the ellipsoids and datums were
established by long line precision surveying and astronomical observation. The processing of the
measurements of these surveys led to establishment of ellipsoids which were best fits to local
conditions and not the entire Earth and datums which were arbitrary to the surveyor’s network.
But because this surveying relied upon the use of bubble leveling for alignment of instruments
with the horizontal plane (the geoid) they were susceptible to perturbations of the gravity field
and thus only useful for local purposes.

Until recently, the reference system for North America has been the North American Datum of
1927 (NAD27), which used Clarke’s 1866 ellipsoid and had its origin at Meade’s Ranch in
Kansas. But because of technical geodetic surveying problems with NAD27 and an interest in
standardizing the reference system on an international basis, the North American Datum of 1983
reference system NAD83 has been chosen to replace NAD27. This system is based upon the
Geodetic Reference System of 1980 (GRS80) which is geocentric (origin is the center of the
Earth’s mass) and uses an ellipsoid approximating the entire Earth based on satellite
measurements.

The World Geodetic System 1984 (WGS84), the internationally recognized datum was originally
based on GRS80, but has had some minor refinements. For practical purposes WGS84 is the
same as NAD83 (down to 9 significant digits).

There are several methods for conversion of geographic data between datums, but the most
convenient and perhaps common are the Molodensky formula (using the “towgs84=” parameter)
and the NADCON (using the “nadgrids=” parameter) used for North American Datum
conversions. The Molodensky method is often used for international conversions and is
considered to have a conversion accuracy of 5-10m in United States regions. The NADCON
method uses of a grid of longitude-latitude corrections from which a correction value can be
interpolated for any non-nodal point. The correction grid is determined by minimum curvature
gridding of corrections for control points whose location had been accurately determined by both
NAD27 and NAD83 surveying methods. Error in conversion with NADCON is generally
considered to be less than a meter (0.15m for most of the conus (conterminous U.S.) region) but
may suffer in regions of poor control.

ProLat uses the NADCON method to provide conversion between NAD27 and NAD83. Table 1
is a summary of the NADCON grid regions. Conus is the default region for ProLat. To use the
other regions, see the function reference for applying the region parameter.

Table 1: NADCON correction regions

 Extent

15

Region nadgrids=
Parameter

East West South North

Conterminous U.S. conus.ncn 131 W 63 W 20 N 50 N
Alaska alaska.ncn 166 W 128 W 46 N 77 N
Hawaii hawaii.ncn 161 W 154 W 18 N 23 N
Puerto Rico and Virgin
Islands

prvi.ncn 68 W 64 W 17 N 19 N

St. George Is., AK stgeorge.ncn 171 W 169 W 56 N 57 N
St. Lawrence Is., AK stlrnc.ncn 172 W 168 W 62 N 64 N
St. Paul Is., AK stpaul.ncn 171 W 169 W 57 N 58 N

Other Datum Conversion Methods

Some datums use a 3, 7, or 10 parameter equation to convert to the WGS84 datum. The
parameters are defined with “towgs84” (pronounced “To WGS84”) in a Proj.4 definition. See
more information about towgs84 in later chapters.

16

What is a Projection?

In ProLat, a projection defines how latitude longitudes are converted to an XY grid system,
usually in meters. There are so many projections because there is no perfect way of flattening an
elliptical earth onto a flat grid. Some projections are better for regions that extend primarily in
the North South direction such as Transverse Mercator. Other projections work better for
regions that extend primarily in the East West directions such as Lambert Conformal Conic.

There special projections that aren’t really projections such as Latitude Longitude where there is
no projection needed, and Geocentric, which is a 3 dimension XYZ projection.

A projection is most commonly thought of as an easting/northing xy mapping onto a flat surface.
It is much like peeling an orange in a way that makes it lie flat. An xy projection is useful
because it allows distance calculations between points.

There are several common characteristics of xy projections.

- There is not a single xy project that works perfectly for the whole world at once, for the
same reason an orange can’t be peeled into one piece that lies perfectly flat without gaps.

- A projection works well in a limited region. That is why there are so many projections.
- Some projections work well in vertical strips, or in horizontal strips, or in diagonal strips,

or at the poles. A cartographer chooses the best projection for the job.

ProLat provides support for a long list of projections. Some like the UTM, and State Plane
projections are easily accessed through standard functions. Others may be accessed through a
custom coordinate system. The mathematical details are not covered in this manual. The user
would need to get advanced information from other reference material.

17

The Universal Transverse Mercator (UTM) Coordinate System

UTM is popular for several reasons. It was adopted by the U.S. Army in 1947 for designating
rectangular coordinates on large scale maps. It uses relatively few parameters and covers the
whole Earth except the poles. However, its limitation is that each zone covers a narrow vertical
strip which may not be suitable for some applications.

UTM is the ellipsoidal Transverse Mercator with 60 predefined zones. Each zone is 6 wide. A
central meridian is defined as running down the center of each zone. There are also vertical
divisions roughly 8 high, but these are not used as parameters in the transformation. The zone
system provides a convenient grid system across the globe except for the poles.

 Its 60 zones are each 6 wide in longitude
 The longitude center of each zone is the central meridian
 The central meridian of each zone always has the x position of 500,000 meters
 X positions increase positively to the east
 Zones are numbered 1 to 60
 Zone 1 covers 180 to 174 W. The central meridian is at 177 W.
 Zone 60 is 174 to 180 E.
 UTM covers latitudes 84N to 80S. The corresponding projection for the polar regions

is the Universal Polar Stereographic (UPS).
 Vertical divisions are 8 high. Maps that use the UTM grid use letters for the vertical

zone. It is not necessary to specify the vertical zone for the transformation.
 For the northern hemisphere, Y starts at 0 meters at the equator

6°

Central meridian

18

 For the southern hemisphere, Y starts at 10,000,000 at the equator
 For both southern and northern hemispheres, Y increases positively to the north
 Exceptions occur around Norway.

Distance measurements work within a zone, but not between zones. To use UTM conversions
with ProLat for .Net use the CoordSys.GetCS() function with the “UTM” group to create a
coordinate system definition. Use the GetCS() function to create another coordinate system to
convert to or from UTM. Then use the CoordSys.Transform() function.

Normally a zone is selected by the user. However, to calculate a UTM zone from a lat/lon
coordinate, the following pseudocode can be adapted to most languages.

// Calc UTM zone, with lon positive east.
zone = (int) ((180 + lon) / 6) + 1;
if (lat >= 56 && lat < 64 && lon >= 3 && lon < 12)
 zone = 32;
else if (lat >= 72 && lat < 84) {
 if (lon >= 0 && lon < 9)
 zone = 31;
 if (lon >= 9 && lon < 21)
 zone = 33;
 if (lon >= 21 && lon < 33)
 zone = 35;
 if (lon >= 33 && lon < 42)
 zone = 37;
}

Lat1 Lat2 Lon1 Lon2 Zone
56 64 0 3 31N
72 84 0 9 31N
56 64 3 12 32N
72 84 9 21 33N
72 84 21 33 35N
72 84 33 42 37N

Exception Regions

19

State Plane Coordinate System (SPCS)

To use State Plane Coordinate Systems with ProLat for .Net is as easy as using CoordSys.GetCS
with a group name of “US_SPC83” or “US_SPC27” and selecting the right system. For
example, the following line selects

SP

The State Plane coordinate system was established by the U.S. Coast and Geodetic Survey in the
1930's. One to five zones (due to its size, Alaska has 10 zones) were set up in each state, using a
Lambert Conformal or a Transverse Mercator projection (depending on the dominant orientation
of the state, N-S or E-W). The Oblique Mercator projection is used for the Alaskan Panhandle
due to its more angular orientation.€€. The specific projection and the size of the zone was
selected to fit the geometry of the state, and to keep distortions at or below one part in 10,000.
The low distortion makes the SPCS useful at the state and county levels. Zone boundaries are
typically political boundaries such as county or city lines.

There are two sets of State Plane definitions. One based on the NAD27 datum and one based on
the NAD83 datum. There are also other differences between these two sets. ProLat provides
coordinate conversion for State Plane in NAD27 and NAD83.

To use State Plane coordinates with ProLat for .Net, use the CoordSys.GetCS() function with the
group, “US_SPC27” or “US_SPC83”. Also define another coordinate system with GetCS().
Then, use CoordSys.Transform to convert between these systems. Use
CoordSys.GetSystem(“US_SPC83”) to get a list of zones within the group. See the function
reference and examples for details.

Example:

C#:

try {
 CoordSys LatLon = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
 ‘ Alabama Western zone
 CoordSys SPC = CoordSys.GetCS("US_SPC83", " AL83-W", "NAD83", "METERS");

 // Place the longitude and latitude values in arrays
 double[] Lon_x = new double[] { -87.6 }; // Note West longitudes are negative
 double[] Lat_y = new double[] { 30.1 };
 double[] Hgt_z = new double[] { 0.0 };

 CoordSys.Transform(LatLon, SPC, Lon_x, Lat_y, Hgt_z, 1);

 // Display converted values ...
}
catch(CCConfigException ex)
{
 // Any configuration problems show up here with a message in e.Message
 MessageBox.Show(ex.Message, “ProLat message”, MessageBoxButtons.OK, 0);
}

20

21

The Geocentric ECEF XYZ Coordinate System

Geocentric earth centered earth fixed coordinates are the raw coordinates used by GPS units.
They are 3-dimensional with the zero point of the xyz grid being at the center of the earth. The
units are in meters.

Many high-end GPS units store their coordinates as Geocentric to maintain the highest accuracy.

To use Geocentric coordinates, use the CoordSys.GetCS(“ECEF”, “ECEF”, “WGS84”,
“METERS”) to define a coordinate system definition. Also define another coordinate system
with GetCS(). Then, use CoordSys.Transform to convert between these systems. See the
function reference and examples for details.

Note that Geocentric ECEF XYZ coordinates should not be confused with geocentric latitude
longitude coordinates. Geocentric latitude longitude coordinates are rarely used and look similar
to standard lat / lon coordinates. However, the latitude angle is relative to the earth’s center
instead of being relative to the tangential plane of the earth’s surface at that location as is used
with normal latitude longitude coordinates.

Geocentric ECEF XYZ plot with z extending straight out of the page.

x

y

22

Redistributable Files

ProLat needs the files to be in the same directory where the file ProLatNet.dll or prolat.dll is
located. Alternatively, the function CoordSys.SearchPathAdd() or ProLatSetFilePath may be
used to define the directory where support files are located.

It is not necessary to keep all of the supporting files with the application if it is known they will
not be needed. Some are fairly large.

Here is a list of ProLat for .Net redistributable files:

ProLatNet.dll, prolat.dll
The main DLL library files. It should be located in the same directory as
the executable, or in a directory that is on the PATH environment variable.

 The following files should be located in the same directory as

ProLatNet.dll, or use CoordSys.SearchPathAdd() to specify their location.

Geodesy*.txt The files in this folder constitute the Geodesy database. They normally

should reside in a sub-folder named Geodesy in the folder with the
application.

conus NAD27 to NAD83 conversion for the Conterminous U.S.
ntv1_can.dat NAD27 to NAD83 conversion for Canada. Note: the improved

ntv2_can.gsb is available for free end-user download from the NRCan
web site at http://www.geod.nrcan.gc.ca/index_e/products_e/software_e/ntv2_e.html

alaska NAD27 to NAD83 conversion for Alaska.
hawaii NAD27 to NAD83 conversion for Hawaii.
prvi NAD27 to NAD83 conversion for Puerto Rico and Virgin Islands.
stgeorge NAD27 to NAD83 conversion for St. George Is. AK.
srlrnc NAD27 to NAD83 conversion for St. Lawrence Is. AK.
stpaul NAD27 to NAD83 conversion for St. Paul Is. AK.

xxharn.hrn HARN/HPGN to NAD83 grid shift files for all NADCON regions.

.Net Reference

23

Programming in Windows .Net Environments
This section covers Visual Studio .Net programming for C#, VB .Net, and C++/CLI.

Steps for Visual Studio and Windows 8

The Examples folder has examples for C#, VB, and C++ in Visual Studio 2010. ProLat also
works with Windows 8 and Visual Studio 2012.

For both VS2010 and VS2012, here are the steps to use ProLat for .Net:

1. Add a reference to ProLatPortable.dll. This is done by right clicking on the Visual Studio
project and select Add Reference. Navigate to the ProLatPortable\bin\Release folder and
select ProLatPortable.dll.

2. At the top of a source code file add a line to import the namespace:
C#: add using ProLatNet;
VB: add Imports ProLatNet
C++: add using namespace ProLatNet;

Call the ProLat functions in the class CoordSys as shown in the examples. In most cases,
these two steps are all that is needed.

Windows Phone 7 and 8

ProLat for .Net is works seamlessly in Windows Phone 7 and 8. For Windows Phone 7, the
Phone 7 SDK is required from Microsoft. It provides a phone emulator.

A ProLat example for Windows Phone 7 is provide in Examples\ProLatWPA for VS2010.

For Windows Phone 8, it is necessary to use Windows 8 with Visual Studio 2012 Express for
Windows Phone 8 or a higher version of Visual Studio. The ProLatPortable.dll file works with
both Windows Phone 7 and 8.

.Net Reference

24

.Net Examples

Examples for C# .Net and VB .Net are included in the “examples” folder. These are created with
Visual Studio 2010. See below for basic examples.

Using ProLat for .Net functions

Here is an example that converts latitude / longitude coordinates to UTM coordinates.

C#:

Using ProLatNet;

try {
 // Get a coordinate system for standard latitude/longitudes
 CoordSys LatLon = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

 // Get a coordinate system for UTM zone 17 North
 CoordSys UTM17 = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS");

 // Place the longitude and latitude values in arrays
 double[] Lon_x = new double[] { -82.0 }; // Note West longitudes are negative
 double[] Lat_y = new double[] { 36.0 };
 double[] Hgt_z = new double[] { 0.0 };

 // Peform the conversion. In this case there is only one point
 CoordSys.Transform(LatLon, UTM17, Lon_x, Lat_y, Hgt_z, 1);

 // Display converted values ...
}
catch(CCConfigException ex)
{
 // Any configuration problems show up here with a message in e.Message
 MessageBox.Show(ex.Message, “ProLat message”, MessageBoxButtons.OK, 0);
}

Let’s step through this example to see the essential parts. Most of the capabilities are provided
by the CoordSys class.

1. Use the CoordSys.GetCS() method to get a coordinate system for the source coordinates.
In this case it is latitude/longitude degrees. See the Groups and Systems sections below
to find the values to use.

2. This example converts to UTM so it also gets a coordinate system for UTM zone 17.
3. Next the source latitude and longitude is placed in arrays. ProLat for .Net requires arrays

because they are much more efficient when processing lots of data. So we start out that
way from the first examples.

4. Finally, CoordSys.Transform converts the coordinates. Transform will convert between
any defined coordinate systems. To convert the other direction, just swap the first two
parameters. The conversion is in-place within the arrays because when processing large
arrays it is more efficient.

5. Error handling is provided with the catch mechanism. All ProLat errors will use
CSConfigException to report a message. An application also can check
CoordSys.GetErrNo() to get a numerical code for the last error, although the message is

.Net Reference

25

more descriptive. Sometimes a conversion may fail without throwing an exception, in
which case the converted values will be very large to indicate the problem.

Alternately Proj.4 definitions may be used as in the following example.

C#:

 // Get a coordinate system for latitude/longitudes using a Proj.4 definition
 CoordSys LatLon = CoordSys.GetCS("+proj=longlat +datum=WGS84");

 // Get a coordinate system for UTM zone 17 North using a Proj.4 definition
 CoordSys UTM17 = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84");

VB:
 Dim LatLon As CoordSys = CoordSys.GetCS("+proj=longlat +datum=WGS84")
 Dim UTM17 As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84")

C++:
 CoordSys^ LatLong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
 CoordSys^ UTM17 = CoordSys::GetCS("UTM", "UTM-17N", "WGS84", "METERS");

.Net Class and Function Reference

The following classes are provided in ProLat for .Net:

- CoordSys: This is the primary class that offers coordinate conversion and projection
capabilities.

- DMS: This class provides parsing of common text coordinate formats. For
example it can convert W 92°30'21.5" N 43°30'21.5" into decimal
format of -92.5059722 43.5059722, etc.

Class CoordSys

See the Examples section near the beginning of this manual for a quick view of how the
CoordSys class is used to perform coordinate conversion.

There is no CoordSys constructor. Instead, use CoordSys.GetCS to get an instance of a
CoordSys object that represents a fully qualified coordinate system.

The following methods are called statically on the class (not on an instance):

GetCS() - Creates a coordinate system definition returned as an instance of CoordSys.

Transform() - The main function to convert coordinate points.

GetGroups() - Returns a list of groups in the Geodesy coordinate systems database.
GetSystems() - Returns a list of systems in a selected group.
GetDatums() - Returns a list of available datums in the Geodesy database.

.Net Reference

26

GetUnits() - Returns a list of available units in the Geodesy coordinate systems database.

GetProjNames() - Returns a list of projections available for Proj.4 compatible definitions.
GetProjDescriptions() - Returns a list of descriptions of projections.
GetProjParameters() - Returns an abbreviated list of parameters needed by projections.

AddFileLocationAssembly() - Informs ProLat to look in a new assembly for supporting files.
AddFileLocationFolder() - Adds a directory where support files are located.

EllipsoidForward() - Calculate the location when given the distance and direction.
EllipsoidInverse() - Calculate the shortest distance and direction between two locations.

GetErrNo() - Get’s an error code.

The following items are available with an instance of CoordSys:

ScaleConvergence() - Find the scale error and direction to the real location for a projection.

The following member variables are available to provide the numerical values of a projection’s
parameters. These values are undocumented, but made available. Use these with care because
each projection sets the variables differently.

a - Ellipsoid semi-major axis in meters
b - Ellipsoid semi-minor axis in meters
rf - Ellipsoid reciprocal flattening
k0 - Scale factor
lon_0 - Central meridian
lat_0 - Central parallel
x_0 - False easting
y_0 - False northing
to_meter - Unit scaling

Class DMS - Text Coordinate Parsing Class

GetDMS() - Extract coordinate pairs from a string into arrays
GetDMSSingle() - Get a single component such as latitude only or longitude only.
GetLat() - Get a single latitude value.
GetLon() - Get a single longitude value.

Testing and Verification

Testing is very important for coordinate conversion applications!

Coordinate translations require a high degree of care to verify that the results are as intended.
There are many different parameters which increase the chances of a one parameter being

.Net Reference

27

configured wrong. Effective Objects highly recommends using a verification procedure at the
design time of your program and each time you use a different set of configuration parameters.

A verification procedure is straightforward. Find two or more known geographic coordinates
with their translated values. These are known as control points. Run these coordinates through
the software to make sure they transform properly to the known values.

CoordSys Method Reference

GetCS

.Net
static CoordSys GetCS (string Group, string System, string Datum, string Units)
static CoordSys GetCS (string ProjDef)

Creates a coordinate system object that may be used with Transform to convert coordinates.

Input Parameters:

- Group The name of a Geodesy group. (Use GetGroups() to get a list of groups.)

- System The name of a system within the group. (Use GetSystems() to get a list.)

- Datum The name of a datum. (Use GetDatums() to get a list.)

- Units The name of the units for this coordinate system. (Use GetUnits() to get a
list.)

- ProjDef A Proj.4 compatible definition string. This supports all Proj.4 parameters

except +init. See the appendix for more information about these
parameters.

Outputs:
 Returns an instance of CoordSys which can be used with the Transform method.

Errors:
 Throws an exception named CSConfigException if an error is detected. Use the

exception message for more information. Note that some errors such as typos in values
are not detected, so it is important to check a few known reference points.

GetCS creates a coordinate system object of type CoordSys. It attempts to check parameters and
the existence of the proper supporting files such as grid shift files. The resulting instance can be
passed to Transform to convert coordinates to a different coordinate system.

Examples with Geodesy definitions:

C#:
CoordSys latlong = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”);
CoordSys utm17 = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS”);

.Net Reference

28

VB.Net:
Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)
Dim utm17 as CoordSys = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS”)

C++/CLI:
CoordSys^ latlong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
CoordSys^ utm17 = CoordSys::GetCS("UTM", "UTM-17N", "WGS84", "METERS");

Examples with Proj.4 definitions:

C#:
CoordSys utm17 = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);

VB:
Dim utm17 As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”)

C++/CLI:
CoordSys^ utm17 = CoordSys::GetCS("+proj=utm +zone=17 +datum=WGS84”);

.Net Reference

29

Transform

.Net
Static void Transform (CoordSys Source, CoordSys Destination,

double[] LonX, double[] LatY, double[] HgtZ,
 int PointCount)
Win32/64
int ProLatTransform (int FromHandle, int ToHandle,

double *LonX, double *LatY , double *HgtZ,
 int iCount)

Transforms coordinates between coordinate systems.

Inputs:

Source: A CoordSys instance returned from GetCS. It represents the source coordinate
system

Destination: A CoordSys instance returned from GetCS. It represents the destination
coordinate system.

LonX: A managed double array that acts as an input and an output. The conversion is
done in-place and LonX will return with the results. Note that West directions should
have a negative value.

LatY: A managed double array that acts as an input and an output. The conversion is
done in-place and LatY will return with the results. Note that South directions should
have a negative value.

HgtZ: A managed double array that acts as an input and an output. The conversion is
done in-place and HgtZ will return with the results. If no Z height values are present in
the source coordinates, the HgtZ array should be filled with zeros.

PointCount : The number of coordinate points to convert.

Note that if a conversion is not successful, Transform may throw an exception for critical errors
or may return a huge value for non-critical errors. Error values will be greater than 1e100. Use
GetErrNo() to check for an error code.

There are several possible reasons for an error. Double check the parameters for the coordinate
systems. The two most likely problems encountered are: 1. Coordinates out of range for valid
conversion with the defined parameters; and 2. ProLat was unable to find supporting files needed
to shift datums, etc. Also, note that ProLat functions are not able to check for all valid
parameters because of the unlimited possible combinations.

It is highly recommended to test conversion parameters using control points. This involves
getting several coordinate points with their known converted values. Test using these control
points with ProLat functions to verify the desired conversion is produced.

.Net Reference

30

.Net Examples:
VB:
Try
 Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)
 Dim utm17 as CoordSys = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS”)

 Dim LonX(1), LatY(1), Z(1) As Double
 LonX(0) = -82.0
 LatY(0) = 43.1
 Z(0) = 0.0

 CoordSys.Transform(latlong, utm17, LonX, LatY, Z, 1)

 ‘ Display values here
Catch ex As CSConfigException
 MsgBox(ex.Message, MsgBoxStyle.OkOnly, “ProLat Message”)
End Try

C#:
Try
{
 CoordSys ll = CoordSys.GetCS("proj=longlat datum=WGS84");
 CoordSys utm10 = CoordSys.GetCS("proj=utm zone=10 datum=WGS84");
 double[] x = { -122.0 }; // Downtown Seattle
 double[] y = { 47.0 };
 double[] z = { 0 };

 CoordSys.Transform(ll, utm10, x, y, z, 1);
}
Catch (CSConfigException e)
{
 MessageBox.Show(e.Message, "ProLat message");
}

C++/CLI:
try
{
 CoordSys^ A = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
 CoordSys^ B = CoordSys::GetCS("UTM", "UTM-17N", "WGS84", "METERS");

 array<double>^ lon_x = gcnew array<double>(1);
 array<double>^ lat_y = gcnew array<double>(1);
 array<double>^ z = gcnew array<double>(1);
 lon_x[0] = -82.5;
 lat_y[0] = 43.0;
 z[0] = 0;

 CoordSys::Transform(A, B, lon_x, lat_y, z, 1);
}
catch(CSConfigException^ e)
{
 MessageBox::Show(e->Message, "ProLat message");
}

Win32 Examples:
See the examples folder for complete examples.

VB6 / Excel / Access:
iReturn = ProLatTransform(hFrom, hTo, dfX(0), dfY(0), dfZ(0), iDetected)

C++:
iReturn = ProLatTransform(hFrom, hTo, X, Y, Z, iDetected);

Android Examples:
See the examples folder for complete examples.

csA.transform(csB, 2,

.Net Reference

31

C++:
iReturn = ProLatTransform(hFrom, hTo, X, Y, Z, iDetected);

.Net Reference

32

CoordSys.AddFileLocationAssembly

.Net
void CoordSys.AddFileLocationAssembly (Assembly assembly)

Adds an assembly reference so that ProLat can look for supporting files such as grid shift files
and custom definitions.

ProLat includes coordinate definitions and datum grid files within its assembly. If the
application needs files that are not already there (like NTV2_0.GSB, which is fairly large) the
application will need to include the file in its own assembly and then tell ProLat to look in the
assembly with this function.

Here are the steps for adding a file to a project and then telling ProLat about the project
assembly.

a. Right-click the project and select Add -> New folder. Name the new folder
“Geodesy” or “ProLatFiles”. The folder name does not matter because ProLat will
search all the files within an assembly to find the one it needs.

b. Right-click the folder that was just added and select Add -> Existing item…
Navigate to the file needed and select the file(s) to add. (It is possible to highlight the
first file and then Shift-click on the last file to select them all.)

c. In the Visual Studio folder where the files were just added, select all of the files. In
the properties window at the bottom right, there is a property named, “Build Action”.
Change the Build Action to “Embedded Resource”. If this is not done, the file will
not be available.

d. In the application start-up code, call CoordSys.AddFileLocationAssembly(
Assembly.GetExecutingAssembly())

Example:

VB:
 Imports System.Reflection (put at top of file)

 CoordSys.AddFileLocationAssembly(Assembly.GetExecutingAssembly())

C#:
 using System.Reflection; (put at top of file)

 CoordSys.AddFileLocationAssembly(Assembly.GetExecutingAssembly());

C++/CLI:

 CoordSys::AddFileLocationAssembly(Assembly.GetExecutingAssembly());

.Net Reference

33

CoordSys.AddFileLocationFolder

void CoordSys.AddFileLocationFolder (String folder)

Adds a folder for ProLat to look for supporting files such as grid shift files. Call this function
once when your app starts. It is a static class function so one call applies to all instances of
CoordSys. Several folders can be added. Avoid adding the same folder more than once.

Not available with Windows Phone. Use AddFileLocationAssembly() instead.

Example:

VB:

 CoordSys.AddFileLocationFolder("C:\geodesy")

C#:

 CoordSys.AddFileLocationFolder("C:\geodesy");

C++/CLI:

 CoordSys::AddFileLocationFolder("C:\geodesy");

.Net Reference

34

CoordSys.GetErrNo

int CoordSys.GetErrNo()

Returns an error code. 0 indicates no error, and a non-zero error indicates an error was detected.
Most ProLat functions will throw a CSConfigException if a serious error is detected. Check the
exception message to get more details.

In some cases Transform() can have error that do not throw an exception. It is possible to use
GetErrNo() to check for detected errors after calling Transform(). In this case the converted
coordinates that caused an error will be set to a huge value. For some errors, Transform will
continue processing the whole array.

When a non-zero error is detected, check the returned data values from the previous call to a
ProLat function. Sometimes a conversion may detect an error and set the value to a very large
number (greater than 1E100).

Possible error codes:
-14 Latitude or longitude exceeded limits
-15 Invalid x or y

Example:

VB:

 CoordSys.Transform(latlong, utm, x, y, z, 1000)
 If CoordSys.GetErrNo() <> 0 Then
 ' Check for high values
 End If

C#:

 CoordSys.Transform(latlong, utm, x, y, z, 1000);
 if (CoordSys.GetErrNo() != 0)
 {
 // Check for high values
 }

.Net Reference

35

CoordSys.GetGroups and related functions

List<string> CoordSys.GetGroups()
List<string> CoordSys.GetGroups(List<string> Descriptions)
List<string> CoordSys.GetGroups(List<string> Descriptions, List<string> SuggestedDatum)

List<string> CoordSys.GetSystems(string Group)
List<string> CoordSys.GetSystems(string Group, List<string> Descriptions)

List<string> CoordSys.GetDatums()
List<string> CoordSys.GetDatums (List<string> Descriptions)

List<string> CoordSys.GetUnits()
List<string> CoordSys.GetUnits (List<string> Descriptions)

These functions return the lists of available groups, systems, datums, and units available for use
with the function CoordSys.GetCS(group, system, datum, units).

For examples, see the ProLat Examples folder and look for the ProLatCalc examples.

CoordSys.GetProjNames and related functions

List<string> CoordSys.GetProjNames()
List<string> CoordSys.GetProjNames (List<string> Descriptions)
List<string> CoordSys.GetProjNames (List<string> Descriptions, List<string> Params)

These functions return the lists of available projections for use with the function
CoordSys.GetCS(string definitionProj4). The returned names may be used with the “+proj=”
parameter. The param strings are fairly cryptic at the moment. “Sphere” indicates it can take
just a radius parameter, and “Ellips” indicates it needs the semi-major axis, “+a=”, and the
reciprocal flattening, “+rf”. See the list of projections and parameters at the end of this manual
for more details.

For Win32

The following functions get lists of available geodesy items.

int ProLatGetGroups(char *Groups, char *Descs, char *Datums);
int ProLatGetSystems(const char *Group, char *Systems, char *Descs, char *Datums, char *Units)
int ProLatGetDatums(char *Datums, char *Descs, char *Methods, char *Ellipsoids)
int ProLatGetUnits(char *Units, char *Descs, char *Suffixes, char *FmMeters, char *ToMeters);

These functions fill the strings with a list of available items separated by a | character. Use a
split function to separate them into individual items. The strings should be pre-allocated with at
least 10,000 characters of space. See the ProLat Calculator example.

.Net Reference

36

EllipsoidInverse

static void EllipsoidInverse (CoordSys CS, double[] LatFrom, double[] LonFrom,

double[] LatTo, double[] LonTo, double[] Geodesic,
double[] AzForward, double[] AzBack, int PointCount)

static void EllipsoidInverse2 (double a, double rf, double[] LatFrom, double[] LonFrom,

double[] LatTo, double[] LonTo, double[] Geodesic,
double[] AzForward, double[] AzBack, int PointCount)

Calculates the geodesic (shortest distance), the Forward Azimuth (angle from North), and the
Back Azimuth accurate to the ellipsoid.

Inputs:

CS: A CoordSys instance returned from GetCS. It represents the coordinate system with an
xy projection.

LatFrom: A managed array of double float values with the starting latitude values.

LonFrom: A managed array of double float values with the starting longitude values.

LatTo: A managed array of double float values with the destination latitude values.

LonTo: A managed array of double float values with the destination longitude values.

a: The ellipsoid semi-major axis. This alternate form allows calculations without needing a
full coordinate system definition.

rf: The ellipsoid reciprocal flattening.

PointCount : The number of coordinate points to convert.

Outputs:

Geodesic: A managed array of double to receive the results of the geodesic calculation.

AzForward: A managed array of double float to receive the forward azimuth values.

AzBack: A managed array of double float to receive the back azimuth values.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

.Net Reference

37

Example:

C#:
CoordSys utm17 = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);
double[] LonFrom = { -93 };
double[] LatFrom = { 37 };
double[] LonTo = { -93.1 };
double[] LatTo = { 37.1 };
double[] Geodesic = new double[1];
double[] AzForward = new double[1];
double[] AzBack = new double[1];
CoordSys.EllipsoidInverse(utm17, LonFrom, LatFrom, LonTo, LatTo,
 Geodesic, AzForward, AzBack, 1);

.Net Reference

38

EllipsoidForward

static void EllipsoidForward (CoordSys CS, double[] LatFrom, double[] LonFrom,

 double[] Geodesic, double[] Azimuth,
double[] LatTo, double[] LonTo, int PointCount)

static void EllipsoidForward2 (double a, double rf, double[] LatFrom, double[] LonFrom,

 double[] Geodesic, double[] Azimuth,
double[] LatTo, double[] LonTo, int PointCount)

Calculates a point from a starting point with geodesic distance, and azimuth (angle from North),
accurate to the ellipsoid.

Inputs:

CS: A CoordSys instance returned from GetCS. It represents the coordinate system with an
xy projection.

LatFrom: A managed array of double float values with the starting latitude values.

LonFrom: A managed array of double float values with the starting longitude values.

Geodesic: A managed array of double with the geodesic distance.

Azimuth: A managed array of double float with the angle in degrees from North.

a: The ellipsoid semi-major axis. This alternate form allows calculations without needing a
full coordinate system definition.

rf: The ellipsoid reciprocal flattening.

PointCount : The number of coordinate points to convert.

Outputs:

LatTo: A managed array of double float values with the destination latitude values.

LonTo: A managed array of double float values with the destination longitude values.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

Example:
C#:
CoordSys utm17 = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);
double[] LonFrom = { -93.0 };
double[] LatFrom = { 37.0 };
double[] Geodesic = { 20000.0 };
double[] Azimuth = { 47.0 };
double[] LonTo = new double[1];
double[] LatTo = new double[1];
CoordSys.EllipsoidForward(utm17, LonFrom, LatFrom, Geodesic, Azimuth,

LonTo, LatTo, 1);

.Net Reference

39

ScaleConvergence

void ScaleConvergence (double[] X, double[] Y,

double[] Scale, double[] Convergence, int PointCount)

Calculates the scale factor and convergence angle for the given XY points of a projection against
the ideal scale and true north. ScaleConvergence() is a method of an instance of CoordSys.

Input:

X: A managed array of double float values with the X (Easting) values.

Y: A managed array of double float values with the Y (Northing) values.

Output:

Scale: A managed array of double float to receive the results of the scale factor
calculation.

Convergence: A managed array of double float to receive the convergence angle in
radians.

PointCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid.

Example:

VB:

Try
 Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)
 Dim utm17 as CoordSys = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS”)

 Dim LonX(1), LatY(1), Z(1) As Double
 LonX(0) = -82.0
 LatY(0) = 43.1
 Z(0) = 0.0

 CoordSys.Transform(latlong, utm17, LonX, LatY, Z, 1)

 ' Get the scale and convergence for this conversion
 Dim Scale(1), Convergence(1) As Double
 utm17.ScaleConvergence(LonX, LatY, Scale, Convergence, 1)

Catch ex As CSConfigException
 MsgBox(ex.Message, MsgBoxStyle.OkOnly, “ProLat Message”)
End Try

.Net Reference

40

GetDMS

static int GetDMS (string sData, int Order,

out double[] v1, out double[] v2, out double[] v3,
out string ErrMsg)

GetDMS converts text coordinates to double floating point values suitable for coordinate
conversion. It reads most common latitude longitude and decimal formats. See the syntax details
below for complete details.

A few common formats are:

102d49’12.81”W 35d15’38.36”N 100.72 (100.72 is an optional height or altitude)

W102°49’12.81” N35°15’38.36” 100.72

W 102 49.2135 N 35 15.63933 100.72

102.820225 W 35.2606556 N 100.72

Input:

sData: The string containing text coordinates. A string may contain more than one coordinate

separated by newline characters. The results are placed in the v1, v2, v3 arrays.

Order: Determines how latitude longitude values are place in arrays v1 or v2.
0: No latitude longitude detection. The first coordinate value is placed in v1, the

second in v2, and the third in v3.
1: Place longitude values in v1, latitude in v2, and altitude in v3. Uses heading

letters ‘E’ and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: N10.5 W30.5 would get v1=30.5 v2=10.5 v3=0.0.

2: Place latitude values in v1, longitude in v2, and altitude in v3. Uses heading
letters ‘E’ and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: W30.5 N10.5 would get v1=10.5 v2=30.5 v3=0.0.

Note: Coordinates that have no heading letter will always be placed in v1 and v2 in the order
they are detected. It is up to the calling code to determine their order, usually by some
user selectable option.

Output:

v1, v2, v3: Managed arrays of double floating point. The coordinates found in the sData string

will be placed into these arrays. The Order parameter determines if ProLatGetDMS
detects latitude verses longitude values and in which array they land. The array v3
receives the optional altitude.

ErrMsg: A string that will receive an error message if an error is encountered. This may be

NULL to avoid returning an error string..

.Net Reference

41

Returns a count of errors detected. If the count is greater than 0, check the ErrMsg for additional
information. Common errors are related to unrecognized elements in a string.

Syntax:

ProLatGetDMS uses pattern recognition to flexibly detect many different coordinate formats.
Here is the general syntax specification:

sData contains a list of one or more text coordinates separated by carriage returns or line feeds.
The string may contain the following elements:

Comments: Comments are allowed with the following notation:

 // Comment to end of line
 # Comment to end of line

% Comment to end of line
 /* … */ Comment between /* and */

Ignored characters:
 space, tab, comma, semicolon, colon, parenthesis, square brackets,
 and space followed by minus and another space ‘ - ‘

Coordinates:
 A coordinate has the following format:

 DMS DMS [optional altitude]

 DMS is a flexible format for degrees minutes seconds and heading. Both DMS values in a

coordinate need to have the same format. Possible formats include:

 Degrees Minutes Seconds Heading Degrees Minutes Seconds Heading [altitude]
 Degrees Minutes Heading Degrees Minutes Heading [altitude]
 Degrees Heading Degrees Heading [altitude]
 Heading Degrees Minutes Seconds Heading Degrees Minutes Seconds [altitude]
 Heading Degrees Minutes Heading Degrees Minutes [altitude]
 Heading Degrees Heading Degrees [altitude]
 Decimal Decimal [altitude]

 Degrees unsigned decimal value followed by a space, d, D, or °
 Minutes unsigned decimal value followed by a space, or '
 Seconds unsigned decimal value followed by a space, or "
 Heading the letters E, e, W, w, N, n, S, or s

The letters W, w, S, and s will create a negative value.
Minus signs are ignored for Degrees Minutes and Seconds.

 Decimal signed decimal value with no heading letter

 Note that commas are used as separators only. They may not be used as a decimal mark or

thousands marker.

.Net Reference

42

Syntax Examples:

80d25’49.12”W 35d41’29”N // USGS common

80 25 49.12 E 35 41 29 S // Degrees Minutes Seconds

35°41’29”N 80°25’49.12”W 100.7 // With altitude

W80d25’49.12” N35d41’29”

80°25.81867’W 35°41.48333’N // Degrees Minutes

35 41.48333 S 80 25.81867 E

W80d25.81867 N35d41.48333

W80 25.81867 N35 41.48333 // Garmin common

80.4303111dW 35.6913889dN // Degrees

80.4303111 W 35.6913889 N

S 35.691389° E 80.4303111°

W80.4303111 N35.691389

-80.4303111 35.691389 // Decimal
500145.387 2457353.25 // Decimal UTM easting, northing

Example:

VB:

 Dim Lon(), Lat(), Z() As Double
 Dim sData As String = "80 25 49.12 W 35 41 29 N" & vbCr & vbLf & _
 "12 25 49.12 E 15 41 29 S 225.4"

 Dim msg As String
 Dim ErrorCount = DMS.GetDMS(sData, 1, Lon, Lat, Z, msg)

 Dim Output As String = "GetDMS returned:" & vbCr & vbLf
 If (ErrorCount > 0) Then
 Output = Output & "Errors detected: " & ErrorCount.ToString() & vbCr & vbLf
 End If

 If (msg.Length > 0) Then
 Output = Output & "Return message: " & msg & vbCr & vbLf
 End If

 For i = 0 To 1
 Output = Output & Lon(i).ToString() & " " & Lat(i).ToString() & vbCr & vbLf
 Next

 MsgBox(Output)

.Net Reference

43

GetDMSSingle

int GetDMSSingle (string sData, out double[] v, out int[] heading, out string ErrMsg)

ProLatGetDMSSingle converts a single value instead of a full coordinate pair.

A few common formats are:

102d49’12.81”W

W 102 49 12.81

117 23.714 E

35.2606556 N

Returns 0 for success or a count of errors detected. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

sData: A managed string containing text single values. A string may contain more than one

value separated by newline characters. The results are placed in the v output array.

v: A managed array of double floating point. The value found in the sData string will be placed

into this array.

heading: A managed array of 4-byte integers. Indicates the heading value detected: 0 no

heading detected, 1 North, 2 South, 3 East, 4 West. Note that when South and West
headings are detected the value in v is negative.

ErrMsg: A managed string that will receive an error message if an error is encountered.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

.Net Reference

44

GetLat

double GetLat (string sPoint)

This function converts a text latitude to a double floating point value.

Throws CSConfigException for a syntax error, out of range, or an invalid heading.

sPoint: A managed string with a latitude value, which may be a DMS formatted value such as N

47 35 11.35.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

GetLon

double GetLon (string sPoint)

This function converts a text longitude to a double floating point value.

Throws CSConfigException for a syntax error, out of range, or an invalid heading.

sPoint: A managed string with a longitude value, which may be a DMS formatted value such as

W 47 35 11.35.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

.Net Reference

45

MGRS Military Grid Reference System Functions

string MGRS.ConvertFromGeodetic (double Longitude, double Latitude, int Precision = 5)
string MGRS.ConvertFromUPS (char Hemisphere, double Easting, double Northing,

int Precision = 5)
string MGRS.ConvertFromUTM (int Zone, char Hemisphere,

double Easting, double Northing, int Precision = 5)
void MGRS.ConvertToGeodetic (int InMGRS, out double Longitude, out double Latitude)
void MGRS.ConvertToUPS (int InMGRS, out int Zone, out char hemisphere,

 out double Longitude, out double Latitude)
void MGRS.ConvertToUTM (int InMGRS, out int Zone, out char hemisphere,

 out double Longitude, out double Latitude)

The MGRS support in ProLat for .Net is derived from GeoTrans and has equivalent
functionality. To use these functions, an MGRS object needs to be created to specify the
ellipsoid.

C#: MGRS mgrs = new MGRS(); // Uses default WGS84 ellipsoid.
 // For NAD27 ellipsoid use: new MGRS("datum=NAD27")
 string outMGRS = mgrs.ConvertFromGeodetic(lon, lat);

VB.Net: Dim Mgrs1 As MGRS = New MGRS() ' Uses default WGS84 ellipsoid.
 ' For NAD27 ellipsoid use: New MGRS("datum=NAD27")
 Dim OutMGRS As String = Mgrs1.ConvertFromGeodetic(Lon, Lat)

These functions throw CSConfigException when an error is detected.

Outputs: The functions ConvertFromGeodetic, ConvertFromUPS, and ConvertFromUTM return an
MGRS string. The ConvertToXX functions return data in the parameters as described below.

Paramaters:

Longitude: A double value. West longitudes are negative.

Latitude: A double value. South latitudes are negative.

Precision: An optional parameter to indicate the number of digits. This defaults to the
standard of 5 digits precision.

Zone: An integer specifying the UTM zone. For ConvertToUPS and ConvertToUTM the
zone will return 0 for UPS and 1-60 for UTM.

Hemisphere: A char. ‘N’ for Northern hemisphere, and ‘S’ for Southern hemisphere.

Easting: A double value.

Northing: A double value.

InMGRS: A string containing an MGRS value.

.Net Reference

46

For performance it is helpful to group coordinates into like zones because internally it will
recreate coordinate systems when the zone changes.

ConvertToUTM will succeed even if the MGRS string is a UPS region. In this case it returns
UPS values with the zone set to 0. In the same way, ConvertToUPS can return a UTM value
with the zone set from 1 to 60. In these cases the MGRS.warningMessage will contain a
warning when the function returns.

Examples:

C#:
 try
 {

MGRS mgrs = new MGRS(); // Uses default WGS84 ellipsoid.
 // For NAD27 ellipsoid use: new MGRS("datum=NAD27")
 string outMGRS = mgrs.ConvertFromGeodetic(lon, lat);
 mgrs.ConvertToGeodetic(outMGRS, out lon, out lat);
 }
 catch(CSConfigException ex)
 {
 MessageBox.Show(ex.Message);
 }

VB.Net:

 Try
 Dim Mgrs1 As MGRS = New MGRS() ' Uses default WGS84 ellipsoid.
 ' For NAD27 ellipsoid use: New MGRS("datum=NAD27")

 Dim Lon As Double = 5
 Dim Lat As Double = 57
 Dim OutMGRS As String = Mgrs1.ConvertFromGeodetic(Lon, Lat)
 MessageBox.Show("MGRS example: lon/lat: " & _
 Lon.ToString() & " " & Lat.ToString() & vbCrLf & _
 "MGRS: " + OutMGRS)
 Catch ex As CSConfigException
 MessageBox.Show(ex.Message)
 End Try

Win32/64 Reference

47

Programming in Windows 32/64 Native Environments
This section covers programming in VB6 which includes VBA for Excel and Access. It also
covers C++ and other languages compiled into native Windows 32/64 bit environments.

Setup Instructions

1. Make sure prolat.dll is located in the same folder as the executable or is located on the
system Path.

2. Add the installation directory to the PATH environment variable. In Windows use Start
> Control Panel > System > Advanced > Environment Variables. Edit the PATH
variable to add “;C:\ProLat\Win32”, or the path where ProLat was uncompressed. Note
that prolat.dll does not need to be registered because it is a standard Windows DLL like
kernel32.dll, not a COM DLL. It just needs to be on the path to be found by Windows.

3. When redistributing ProLat DLL files, it is usually necessary to copy the files to the same
directory as the .EXE file. Windows will look in the .EXE’s directory for DLL files
before it looks on the path. This simplifies installing the application that use ProLat.

Steps for using ProLat in VB6, Excel, Word, and Access

1. Add the file, prolatdll.bas, into your project. In Excel it is necessary to create a new
module and copy/paste the contents of prolatdll.bas.

2. See the examples for details or perhaps copy an example to get started.
3. Make sure the file, prolat.dll, is on the path as described above.

Steps for using ProLat in C++

1. Insert the line:

#include "..\..\prolatdll.h"

2. Make sure the file, prolat.dll, is on the path as described above.
3. See the examples for details.

Win32/64 Reference

48

Function Reference

ProLatDefineGeodesy and ProLatDefineDef

int ProLatDefineGeodesy (const char *group, const char *system, const char *datum,

const char *unit)

int ProLatDefineDef (const char *projdef)

Creates a coordinate system object that may be used with ProLatTransform to convert
coordinates.

Input Parameters:

- group The name of a Geodesy group. (Use ProLatGetGroups() to get a list of
groups.)

- system The name of a system within the group. (Use GetSystems() to get a list.)

- datum The name of a datum. (Use GetDatums() to get a list.)

- units The name of the units for this coordinate system. (Use GetUnits() to get a
list.)

- projdef A Proj.4 compatible definition string. This supports all Proj.4 parameters

except +init. See the appendix for more information about these
parameters.

Outputs:
 Returns an integer handle to a coordinate system that can be used with

ProLatTransform().

Errors:
 Throws an exception named CSConfigException if an error is detected. Use the

exception message for more information. Note that some errors such as typos in values
are not detected, so it is important to check a few known reference points.

Returns a 4-byte handle to be used with other ProLat DLL functions. The handle must be closed
with ProLatClose() when no longer needed. A zero is returned for an error. Use ProLatErrNo()
and ProLatGetStrErr() for error checking.

Examples with Geodesy definitions:

C++:
int latlong = ProLatGetGeodesy("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
int utm17 = ProLatGetGeodesy ("UTM", "UTM-17N", "WGS84", "METERS”);

VBA and VB6:
Dim latlong As Integer, utm17 as Integer
latlong = ProLatGetGeodesy("LAT_LONG", "LAT-LONG", "WGS84", "METERS")
utm17 = ProLatGetGeodesy ("UTM", "UTM-17N", "WGS84", "METERS")

Win32/64 Reference

49

Examples with Proj.4 definitions:

C++:
int utm17 = ProLatGetDef("proj=utm zone=17 datum=WGS84");

VBA and VB6:
Dim utm17 as Integer
latlong = ProLatGetDef("LAT_LONG", "LAT-LONG", "WGS84", "METERS")
utm17 = ProLatGetDef("UTM", "UTM-17N", "WGS84", "METERS")

More examples:

UTM: utm17 = ProLatGetGeodesy("UTM", "UTM-17N", "WGS84", "METERS")

ECEF (Earth Centered Earth Fixed) Geocentric XYZ:

ecef = ProLatGetGeodesy("ECEF", "ECEF", "WGS84", "METERS")

State Plane Coordinate System:
utm17 = ProLatGetGeodesy("US_SPC83", "CA83-4", "NAD83", "METERS")

Win32/64 Reference

50

ProLatTransform

int ProLatTransform (int FromHandle, int ToHandle,

double *dfX, double *dfY, double *dfZ, int iCount)

Transforms coordinates between coordinate systems.

Returns 0 for success and non-zero for an error condition.

FromHandle: The handle returned from a ProLatDefine function. It represents the source
coordinate system

ToHandle: The handle returned from ProLatDefine function. It represents the destination
coordinate system.

*dfX: A pointer to an array of double float values with the source X values or a longitude values.
The conversion result is done in-place and *dfX will return with the results.

*dfY: A pointer to an array of double float values with the source Y values or a latitude values.
The conversion result is done in-place and *dfY will return with the results.

*dfZ: A pointer to an array of double float values with the source Z values. The conversion
result is done in-place and *dfZ will return with the results. If no Z height values are present in
the source coordinates, the Z array should be filled with zeros.

iCount : The number of coordinate points to convert.

Note that if a conversion is not successful, ProLatTransform may return a non-zero error. Or, it
may return 0 for success but the destination variables hold a very large value. For C/C++ the
error value is the standard HUGE_VAL. For Visual Basic, the value will be greater than 1e12 (a
one with 12 zeros after it.)

There are several possible reasons for an error. Double check the parameters for the coordinate
systems. The two most likely problems encountered are: 1. Coordinates out of range for valid
conversion with the defined parameters; and 2. ProLat was unable to find supporting files needed
to shift datums, etc. Also, note that ProLat DLL functions are not able to check for valid
parameters because of the unlimited possible combinations.

It is highly recommended to test conversion parameters using control points. This involves
getting several coordinate points with their known converted values. Test using these control
points with ProLat functions to verify the desired conversion is produced.

Win32/64 Reference

51

ProLatClose

 void ProLatClose(int Handle)

Closes the data structure and frees any allocated memory. It is important to call this function to
provide proper cleanup and release memory that was used for the coordinate definition.

ProLatGetErrNo

int ProLatGetErrNo()

Returns the last error code set by ProLat DLL functions. Typically this function is only called if
any of the ProLat DLL functions return 0 which indicates an error. Pass the result of this
function to ProLatStrErr to get an error message.

ProLatStrErr

void ProLatStrErr(int iErrNo, char *sMsg, int iMaxChars)

iErrNo is the return value from ProLatGetErrNo. It is typically called only after a
ProLatDefine…() function returns false.

*sMsg: A pointer to a text string with zero terminator to receive the message.

iMaxChars: The size of the sMsg text buffer. This is so ProLatStrErr does not fill past the end
of the buffer area and cause a memory error.

ProLatSetFilePath

void ProLatSetFilePath(const char sDir)

Defines the directory where the ProLat support files are located. Normally prolat.dll will be able
to find its support files in the same directory as the prolat.dll file. However, in some cases you
may wish to place the support files in a different directory. This function can then specify where
they are located.

Win32/64 Reference

52

ProLatEllipsoidInverse

int ProLatEllipsoidInverse (int Handle, double *dfLatFrom, double *dfLonFrom,

double *dfLatTo, double *dfLonTo, double *dfGeodesic,
double *dfAzForward, double *dfAzBack, int iCount)

Calculates the geodesic (shortest distance), the Forward Azimuth (angle from North), and the
Back Azimuth accurate to the ellipsoid.

Returns 0 for success and non-zero for an error condition.

Handle: The handle returned from a ProLatDefine function. It represents the coordinate system
with an xy projection.

* dfLatFrom: A pointer to an array of double float values with the starting latitude values.

* dfLonFrom: A pointer to an array of double float values with the starting longitude values.

* dfLatTo: A pointer to an array of double float values with the destination latitude values.

* dfLonTo: A pointer to an array of double float values with the destination longitude values.

* dfGeodesic: A pointer to an array of double float to receive the results of the geodesic
calculation.

* dfAzForward: A pointer to an array of double float to receive the forward azimuth values.

* dfLatTo: A pointer to an array of double float to receive the back azimuth values.

iCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

int ProLatEllipsoidInverse2 (double a double rf, double *dfLatFrom, double *dfLonFrom,

double *dfLatTo, double *dfLonTo, double *dfGeodesic,
double *dfAzForward, double *dfAzBack, int iCount)

This function takes the ellpsoid parameters ‘a’ and ‘rf’ as parameters instead of a ProLat handle.
Otherwise it is the same.

Win32/64 Reference

53

ProLatScaleConvergence

int ProLatScaleConvergence (int Handle, double *dfX, double *dfY,

double *dfScale, double *dfConvergence, int iCount)

Calculates the scale factor and convergence angle for the given XY points of a projection against
the ideal scale and true north.

Returns 0 for success and non-zero for an error condition.

Handle: The handle returned from a ProLatDefine function. It represents the coordinate system
with an xy projection.

* dfX: A pointer to an array of double float values with the X (Easting) values.

* dfY: A pointer to an array of double float values with the Y (Northing) values.

* dfScale: A pointer to an array of double float to receive the results of the scale factor
calculation.

* dfConvergence: A pointer to an array of double float to receive the convergence angle.

iCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid.

Win32/64 Reference

54

ProLatGetDMS

int ProLatGetDMS (const char *sData,

double *v1, double *v2, double *v3,
int iNSpace, int *piNFound,
char *sErrMsg, int iMsgSize, int iOrder)

ProLatGetDMS converts text coordinates to double floating point values suitable for coordinate
conversion. It reads most commonly used latitude longitude and decimal formats. See the syntax
details below for complete details.

A few common formats are:

102d49’12.81”W 35d15’38.36”N 100.72 (100.72 is an optional height or altitude)

W102°49’12.81” N35°15’38.36” 100.72

W 102 49.2135 N 35 15.63933 100.72

102.820225 W 35.2606556 N 100.72

Returns 0 for success and non-zero for an error condition. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

*sData: The string containing text coordinates. A string may contain more than one coordinate

separated by newline characters. The results are placed in the v1, v2, v3 arrays.

*v1, *v2, *v3: Arrays of double floating point. The coordinates found in the sData string will be

placed into these arrays. The iOrder parameter determines if ProLatGetDMS detects
latitude verses longitude values and in which array they land. For example, iOrder=1 will
cause longitude values to go in v1 and latitude values to go in v2 even if the coordinates
are written in latitude longitude order. The array v3 receives the optional altitude.

iNSpace: The size of the passed v1, v2, v3 arrays.

*piNFound: A pointer to a 4-byte integer returns the number of coordinates that were detected.

*sErrMsg: A pointer to a string that will receive an error message if an error is encountered.

This may be NULL to avoid returning an error string..

iMsgSize : The size of the sErrMsg string to avoid writing past the end of the string memory.

iOrder: Determines how latitude longitude values are place in arrays v1 or v2.

0: No latitude longitude detection. The first coordinate value is placed in v1, the
second in v2, and the third in v3.

1: Place longitude values in v1, latitude in v2, and altitude in v3. Uses heading
letters ‘E’ and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: N10.5 W30.5 would get v1=30.5 v2=10.5 v3=0.0.

Win32/64 Reference

55

Note: Coordinates that have no heading letter will always be placed in v1 and v2 in the
order they are detected. It is up to the calling code to determine their order, usually by
some user selectable option.

Syntax:

ProLatGetDMS uses pattern recognition to flexibly detect many different coordinate formats.
Here is the general syntax specification:

sData contains a list of one or more text coordinates separated by carriage returns or line feeds.
The string may contain the following elements:

Comments: Comments are allowed with the following notation:

 // Comment to end of line
 # Comment to end of line

% Comment to end of line
 /* … */ Comment between /* and */

Ignored characters:
 space, tab, comma, semicolon, colon,
 and space followed by minus and another space ‘ - ‘

Coordinates:
 A coordinate has the following format:

 DMS DMS [optional altitude]

 DMS is a flexible format for degrees minutes seconds and heading. Both DMS values in a

coordinate need to have the same format. Possible formats include:

 Degrees Minutes Seconds Heading Degrees Minutes Seconds Heading [altitude]
 Degrees Minutes Heading Degrees Minutes Heading [altitude]
 Degrees Heading Degrees Heading [altitude]
 Heading Degrees Minutes Seconds Heading Degrees Minutes Seconds [altitude]
 Heading Degrees Minutes Heading Degrees Minutes [altitude]
 Heading Degrees Heading Degrees [altitude]
 Decimal Decimal [altitude]

 Degrees unsigned decimal value followed by a space, d, D, or °
 Minutes unsigned decimal value followed by a space, or '
 Seconds unsigned decimal value followed by a space, or "
 Heading the letters E, e, W, w, N, n, S, or s

The letters W, w, S, and s will create a negative value.
Minus signs are ignored for Degrees Minutes and Seconds.

 Decimal signed decimal value with no heading letter

Win32/64 Reference

56

 Note that commas are used as separators only. They may not be used as a decimal mark or
thousands marker.

Syntax Examples:

80d25’49.12”W 35d41’29”N // USGS common

80 25 49.12 E 35 41 29 S // Degrees Minutes Seconds

35°41’29”N 80°25’49.12”W 100.7 // With altitude

W80d25’49.12” N35d41’29”

80°25.81867’W 35°41.48333’N // Degrees Minutes

35 41.48333 S 80 25.81867 E

W80d25.81867 N35d41.4833

W80 25.81867 N35 41.4833 // Garmin common

80.4303111dW 35.6913889dN // Degrees

80.4303111 W 35.6913889 N

S 35.691389° E 80.4303111°

W80.4303111 N35.691389

-80.4303111 35.691389 // Decimal
500145.387 2457353.25 // Decimal UTM easting, northing

ProLatGetDMS Programming Example:

Dim V1[100] as Double
Dim V2[100] as Double
Dim V3[100] as Double
Dim sData as String
Dim sErr as String * 256
Dim iRet as Long
Dim iNDetected as Long

sData = "80 25 49.12 W 35 41 29N" & Chr(13) & _
 "12 25 49.12 E 15 41 29 S 225.4"

iRet = ProLatGetDMS(sData, V1, V2, V3, 100, iNDetected, sErr, 256, 1)

if iRet > 0 then MsgBox sErr

‘ Returns iNDetected = 2
‘ V1[1] = -80.430311111 V2[1] = 35.820225 V3[1] = 0.0
‘ V1[1] = -12.430311111 V2[1] = -15.820225 V3[1] = 225.4

Win32/64 Reference

57

ProLatGetDMSSingle

int ProLatGetDMSSingle (const char *sData, double *v1, int *piHeading,

int iNSpace, int *piNFound, char *sErrMsg, int iMsgSize)

ProLatGetDMSSingle converts a single value instead of a full coordinate pair.

A few common formats are:

102d49’12.81”W

W 102 49 12.81

117 23.714 E

35.2606556 N

Returns 0 for success and non-zero for an error condition. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

*sData: The string containing text coordinates. A string may contain more than one coordinate

separated by newline characters. The results are placed in the v1, v2, v3 arrays.

*v1: Array of double floating point. The value found in the sData string will be placed into this

array.

*piHeading: Array of 4-byte integers. Indicates the heading value detected: 0 no heading

detected, 1 North, 2 South, 3 East, 4 West. Note that when South and West headings
are detected the value in v1 is negative.

iNSpace: The size of the passed v1 and piHeading arrays.

*piNFound: A pointer to a 4-byte integer returns the number of coordinates that were detected.

*sErrMsg: A pointer to a string that will receive an error message if an error is encountered.

This may be NULL to avoid returning an error string..

iMsgSize : The size of the sErrMsg string to avoid writing past the end of the string memory.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

Win32/64 Reference

58

ProLatGetLat

int ProLatGetLat (const char *sPoint, double *Lat)

This function converts a text latitude to a double floating point value.

Return value is 0 for success, and 1 syntax error, 2 out of range, 3 invalid heading

* sPoint: The latitude value which may be a DMS formatted value such as N 47 35 11.35.

*Lat: A double variable pointer that receives the latitude value.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

ProLatGetLon

int ProLatGetLon (const char *sPoint, double *Lon)

This function converts a text longitude to a double floating point value.

Return value is 0 for success, and 1 syntax error, 2 out of range, 3 invalid heading

* sPoint: The longitude value which may be a DMS formatted value such as W 47 35 11.35.

*Lon: A double variable pointer that receives the longitude value.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

Win32/64 Reference

59

ProLatDMSFormat

int ProLatDMSFormat (char *sFormat, double *pdfX, double *pdfY, double *pdfZ,

int iNCount, char * sOut, int iOutSpace)

This function provides flexible Degree Minute Second formatting of coordinate points.

*sFormat: The string containing output formatting. See below for the syntax.

*pdfX, *pdfY, *pdfZ: Arrays of double floating point. The coordinates points to be formatted.

iNCount: The number of coordinates to format. This is the size of the above arrays.

*sOut: A pointer to a text string where the formatted output is to be placed.

*iOutSpace : The number of characters of space available in the sOut string.

Returns 0 for success and non-zero for an error.

ProLatDMSFormat provides easy and flexible output formatting features. It provides an Auto
format option and a custom format may be entered to get exactly the text format needed.

Examples:

Format: Example Output:
Auto Lon Lat Alt for < 180 W81 25.12345 N37 42.12345 0.00
 XYZ for > 180 410500.12 1510100.12 0.00

ED M.MMMM\tND M.MMMM\tZ.ZZ W81 25.1234 N37 42.1234 0.00
D M S.SSN\tD M S.SSE 35 12 7.12N 91 27 54.12W
X.XX Y.YY 410578.12 1500100.12
\X: X.XX\t\Y: Y.YY\t\Z: Z.ZZ X: 410578.12 Y: 1500100.12 Z: 300.12

Output Format Syntax:

Code Generates
XX.XX X value without heading letter.
 Number of X's before and after the period control space padding and precision.

YY.YY Y value without heading letter
 Number of Y's before and after the period control space padding and precision.

ZZ.ZZ Z value without heading letter
 Number of Z's before and after the period control space padding and precision.

E or O Heading letter for Longitude. Outputs ‘E’ for eastern and ‘W’ for western (negative).

Win32/64 Reference

60

 Use O to identify the value as longitude without printing a heading letter.

N or A Heading letter for Latitude. Outputs ‘N’ for northern and ‘S’ for southern (negative).
 Use A to identify the value as the latitude without printing a heading letter.

D.DD Degrees.
 Number of D’s before and after the period control zero padding and precision.
 D without decimal provides unsigned integer degrees.

For decimal degrees without a heading letter, use X.XX or Y.YY. If D.DD is used without
a heading letter (E or N) Longitude-Latitude order is assumed.

M.MM Minutes.
Number of M’s before and after the period control zero padding and precision.
M without decimal provides unsigned integer minutes.

S.SS Seconds.
 Number of S’s before and after the period control zero padding and precision.

\c Special character. Example to insert a D character use \D, for tab use \t, new line use \n

c Characters may be inserted without a \ if they don't conflict with format characters.
Examples: Any lowercase letter, space, comma, colon, semicolon, etc.

Helper functions:

In special cases it may be desirable to parse the format string once and produce one formatted
output at a time. ProLatDMSFormat is just as efficient and is the recommended solution, so only
use the following functions if you know they are necessary.

int ProLatDMSFormatParse(const char *sFormat, int *FormatArray);

This function requires an empty integer array of at least 100 in length for the function to
store a parsed format. The FormatArray is then passed to the following function to
efficient

int ProLatDMSFormat1(int *FormatArray, double dfX, double dfY, double dfZ,

 char *sOut, int iOutSpace);

This function formats one output value at a time using a FormatArray produced by
ProLatDMSFormatParse.

Win32/64 Reference

61

Reading and Writing PRJ and WKT files

Three functions are available to process PRJ and WKT (Well Known Text) files. ProLat treats
both file types the same. The functions take a string of one type and converts it. It is necessary
to provide the code to read and write the files.

ProLatConvertPRJToStr Converts a PRJ/WKT/ string to a ProLat custom parameter string.
ProLatConvertStrToESRI Converts a ProLat custom string to a PRJ string.
ProLatConvertStrToWKT Converts a ProLat custom string to WKT (Well Known Text)
ProLatConvertHandleToStr Converts a ProLat coordinate system handle to a custom string.

A typical approach would be to use ProLatConvertPRJToStr to produce a string that may be used
with ProLatCustomAdd and ProLatDefineCustom to get a ProLat coordinate system handle.
This handle may then be used with ProLatTransform to convert coordinates.

ProLatConvertPRJToStr

int ProLatConvertPRJToStr (const char *sPRJ, char *sOutCust, int iOutLen)

*sPRJ: A string containing a PRJ or WKT coordinate system.

*sOutCust: A string that receives the coordinate system converted to ProLat custom format.

*iOutLen: The length of allocated space in bytes reserved for the sOutCust string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert common PRJ and WKT coordinate system definitions into the
ProLat custom format which may be used with the ProLatCustomAdd and ProLatCustomDefine
functions. The function needs to be used with care and the user should very that parameters are
converted successfully.

Win32/64 Reference

62

ProLatConvertStrToESRI

int ProLatConvertStrToESRI (const char *sCustStr, char *sESRI, int iOutLen)

*sCustStr: A string containing a ProLat custom coordinate system string.

* sESRI: A string that receives the coordinate system converted to ESRI PRJ format.

*iOutLen: The length of allocated space in bytes reserved for the sESRI string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert a ProLat custom string to the ESRI PRJ format. The function
needs to be used with care and the user should very that parameters are converted successfully.

ProLatConvertStrToWKT

int ProLatConvertStrToWKT(const char *sCustStr, char *sWKT, int iOutLen)

*sCustStr: A string containing a ProLat custom coordinate system string.

* sWKT: A string that receives the coordinate system converted to WKT PRJ format.

*iOutLen: The length of allocated space in bytes reserved for the sESRI string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert a ProLat custom string to the ESRI PRJ format. The function
needs to be used with care and the user should very that parameters are converted successfully.

Currently support is not provided for State Plane Coordinate Systems using the “+init=NAD27”
or “+init=NAD83”.

This function is different than the ProLatConvertStrToESRI function because it does not apply
ESRI specific conventions to the coordinate system.

Win32/64 Reference

63

ProLatConvertHandleToStr

int ProLatConvertHandleToStr (int Handle, char *sCustStr, int iOutLen)

Handle: ProLat handle.

* sCustStr: A string that receives the ProLat custom string definition.

*iOutLen: The length of allocated space in bytes reserved for the sCustStr string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to extract the ProLat custom string defintion for the coordinate system
defined in the Handle. If for some reason the coordinate system cannot be represented by a
string, a value of 1 is returned.

Win32/64 Reference

64

ProLatX ActiveX DLL

The ProLat DLL functions are provided in a convenient ActiveX DLL for use by Visual Basic
and VBScript applications with ASP (Active Server Pages). The files are located in
examples\ProLatX.

It works only on the server side because the ProLatX ActiveX DLL is a wrapper for the standard
ProLat Windows DLL.

To use ProLatX with ASP VBScript, you will need prolatx.dll, prolat.dll and the other support
files depending on type of conversions needed. You must also be familiar with ASP
programming.

From a DOS shell prompt run REGSVR32 PROLATX.DLL to register it.

ProLatX is an apartment threaded ActiveX DLL. To make it work in Visual Basic it is required
to use the Project -> References and check the ProLatX option. After this is done you can create
an object from it using one of two ways.

Method 1: Set a global variable of type ProLat such as:

Private mProLat As ProLat

Then use the New operator to create the object:

Private Sub Form_Load()
 Set mProLat = New ProLat
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Set mProLat = Nothing
End Sub

Method 2: Use the CreateObject method. Note this still requires the ProLatX to be selected in
the References list.

Set oProLat = Server.CreateObject("ProlatX.Prolat")

Win32/64 Reference

65

List of ProLatX Methods and Properties

ProLatX Method Equivalent ProLat DLL Function
DefineLatLong ProLatDefineLatLong
DefineUTM ProLatDefineUTM
DefineSPCS ProLatDefineSPCS
DefineGeocentric ProLatDefineGeocentric
DefineFromFile ProLatDefineFromFile
CustomAdd ProLatCustomAdd
DefineCustom ProLatDefineCustom
Transform (Use properties X,Y,Z and
TransformInternal for ASP)

ProLatTransform

CloseDefinition ProLatClose
GetErrNo ProLatGetErrNo
StrErr ProLatStrErr
TransformInternal *
GetDMS ProLatGetDMS
X (property)
Y (property)
Z (property)

* Note that TransformInternal performs the transform on X,Y, and Z properties. The result will
be these properties being in the destination coordinate system.

ProLatX source code is included in the file ProLatX.vbp and ProLat.cls. An example standard
VB application is provided in PLCalcX.vbp.

Win32/64 Reference

66

Creating DMS Values From Decimal Values

For readability, DMS (Degrees Minutes Seconds) format is commonly used. Use the functions
in the preceding section to format DMS output, or use the following steps to manually convert
the decimal latitude/longitude results into DMS format.

1. Get the heading from the sign of the value. For longitudes, a negative number is West
and a positive number is East. For Latitudes, a negative number is South and a positive
number is North.

2. Convert negative values to be positive, because all DMS values are positive with heading
shown by a direction letter such as W, E, N, S

3. Get degrees by taking the integer part of the decimal value.
 Degrees = Int(Value)

4. Get minutes by taking the decimal part and multiplying by 60.
 Minutes = (Value – Int(Value)) * 60.0
This gives minutes with a decimal fraction. Stop here if you just need degrees with
fractional minutes. Go to Step 5 to get seconds.

5. Get seconds by taking the decimal part of the minutes and multiplying by 60.
 Seconds = (Minutes – Int(Minutes)) * 60.0
Remove the decimal portion from the minutes
 Minutes = Int(Minutes)

DMS values are formatted in many ways. There does not seem to be a universal standard. We
recommend using pure decimal values when possible because they are easily readable by code.
Decimal does not include heading letters, so it is necessary to document which value is longitude
and which value is latitude.

 Decimal format lon/lat: -98.185741 35.821771

 Decimal with heading: W98.185741 N35.821771

 Heading Degrees Minutes: W98 11.14446 N35 49.30626

Degrees Minutes Seconds Heading: 98d11'8.6676"W 35d49'18.3756"N

Custom Coordinate Systems

67

Custom Coordinate Systems

It is possible to define custom coordinate systems using a Proj.4 compatible definition string
with the ProLat CoordSys.GetCS() function. See below for parameter details.

Example Coordinate System Definition

To create a custom coordinate system using a parameter list, it is necessary to know something
about the selected projection’s details. It may be necessary to refer to other literature to get
complete details and usage of a projection. However, it is sometimes possible to select
parameters based on the coordinate specifications.

For example, you receive a set of coordinates that have the following specs:

Lambert Conformal Conic, WGS84 datum, Central meridian of W122 degrees, latitudes of
intersection at N41d40 and N39d20, central latitude at N39d20, with false easting of
2,000,000 and false northing of 500,000.

After looking through the available parameters in the list below, it is possible to determine the
parameters and create the following string for use with CoordSys.GetCS():

proj=lcc datum=NAD83 lon_0=-122 lat_1=41d40 lat_2=40 lat_0=39d20
x_0=2000000 y_0=500000

Required Parameters

A coordinate system requires proj= parameter. It also requires either datum= parameter or else a
definition of the ellipse along with a nadgrids= or or a towgs84= parameter which tells ProLat
how to convert to the WGS84 datum. It also needs projection parameters. Most projections use
lon_0= for the central meridian and lat_0= for the central parallel. All Cartesian projections
allow x_0= and y_0= to provide false easting and northing. See the projection descriptions later
in this manual for special parameters needed by some projections.

Parameter List

The following parameters and usage varies with the projection selected. The options are
processed in left to right order. Reentry of an option is ignored with the first occurrence assumed
to be the desired value.

No spaces may be placed around the equal sign. A parameter without an equal sign shown
below will activate that option without requiring additional parameter information. A plus sign
before the parameter is optional.

proj=name Required for selection of the transformation, and name is from the list of available

projections. See Projection Descriptions later in this section for additional
parameter information for selected projections.

Custom Coordinate Systems

68

Example: proj=tmerc

Available Projection Names

For detailed parameter information see the section on Projection Descriptions. Please contact
Effective Objects if a projection is needed that is not listed here.

aea Albers Equal Area
aeqd Azimuthal Equidistant
airy Airy
aitoff Aitoff
eck3 Eckert III
eck6 Eckert VI
geocent Geocentric, ECEF, XYZ
gn_sinu General Sinusoidal Series
kav7 Kavraisky VII
krovak Krovak projection
latlong Latitude/Longitude (non-projected)
 (also latlon, longlat, lonlat)
lcc Lambert Conformal Conic
leac Lambert Equal Area
lsat Space oblique for LANDSAT
mbtfps McBryde-Thomas Flat-Polar
 Sinusoidal
moll Mollweide
nzmg New Zealand Map Grid
omerc Oblique Mercator
ortho Orthographic
poly Polyconic (American)

putp1 Putnins P1
sinu Sinusoidal (Sanson-Flamsteed)
somerc Swiss Oblique Mercator
stere Stereographic
sterea Oblique Stereographic Alternative
tmerc Transverse Mercator
ups Universal Polar Stereographic
urmfps Urmaev Flat-Polar Sinusoidal
utm Universal Transverse Mercator
vandg van der Grinten I
vandg2 van der Grinten II
vandg3 van der Grinten III
vandg4 van der Grinten IV
wag1 Wagner I (Kavraisky VI)
wag2 Wagner II
wag3 Wagner III
wag4 Wagner IV
wag5 Wagner V
wag6 Wagner VI
wintry Winkel Tripel

+ellps=name The +ellps option allows selection of standard, predefined ellipsoid figures. This
parameter is required if the +datum parameter is not used. For spherical only
projections, the major axis is used as the radius. Alternatively, it is possible to
specify the ellipse with the a= and rf= parameters.

Available Ellipsoids

MERIT a=6378137.0 rf=298.257 MERIT 1983
SGS85 a=6378136.0 rf=298.257 Soviet Geodetic System 85
GRS80 a=6378137.0 rf=298.257222101 GRS 1980(IUGG, 1980)
IAU76 a=6378140.0 rf=298.257 IAU 1976
airy a=6377563.396 b=6356256.910 Airy 1830
APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
NWL9D a=6378145.0. rf=298.25 Naval Weapons Lab., 1965
mod_airy a=6377340.189 b=6356034.446 Modified Airy
andrae a=6377104.43 rf=300.0 Andrae 1876 (Den., Iclnd.)
aust_SA a=6378160.0 rf=298.25 Australian Natl & S. Amer. 1969
GRS67 a=6378160.0 rf=298.2471674270 GRS 67(IUGG 1967)
bessel a=6377397.155 rf=299.1528128 Bessel 1841
bess_nam a=6377483.865 rf=299.1528128 Bessel 1841 (Namibia)

Custom Coordinate Systems

69

clrk66 a=6378206.4 b=6356583.8 Clarke 1866
clrk80 a=6378249.145 rf=293.4663 Clarke 1880 mod.
CPM a=6375738.7 rf=334.29 Comm. des Poids et Mesures 1799
delmbr a=6376428. rf=311.5 Delambre 1810 (Belgium)
engelis a=6378136.05 rf=298.2566 Engelis 1985
evrst30 a=6377276.345 rf=300.8017 Everest 1830
evrst48 a=6377304.063 rf=300.8017 Everest 1948
evrst56 a=6377301.243 rf=300.8017 Everest 1956
evrst69 a=6377295.664 rf=300.8017 Everest 1969
evrstSS a=6377298.556 rf=300.8017 Everest (Sabah & Sarawak)
fschr60 a=6378166. rf=298.3 Fischer (Mercury Datum) 1960
fschr60m a=6378155. rf=298.3 Modified Fischer 1960
fschr68 a=6378150. rf=298.3 Fischer 1968
helmert a=6378200. rf=298.3 Helmert 1906
hough a=6378270.0 rf=297. Hough
intl a=6378388.0 rf=297. International 1909 (Hayford)
krass a=6378245.0 rf=298.3 Krassovsky, 1942
kaula a=6378163. rf=298.24 Kaula 1961
lerch a=6378139. rf=298.257 Lerch 1979
mprts a=6397300. rf=191. Maupertius 1738
new_intl a=6378157.5 b=6356772.2 New International 1967
plessis a=6376523. b=6355863. Plessis 1817 (France)
SEasia a=6378155.0 b=6356773.3205 Southeast Asia
walbeck a=6376896.0 b=6355834.8467 Walbeck
WGS60 a=6378165.0 rf=298.3 WGS 60
WGS66 a=6378145.0 rf=298.25 WGS 66
WGS72 a=6378135.0 rf=298.26 WGS 72
WGS84 a=6378137.0 rf=298.257223563 WGS 84
sphere a=6370997.0 b=6370997.0 Normal Sphere (r=6370997)

+datum=name Allows selection of a standard predefined datum name. The supported datum
names are shown below. If +datum is not used, it is required to specify the
+ellps= parameter, and if necessary the +nadgrids= or +towgs84=

parameters.

name ellipse definition/comments
WGS84 WGS84 towgs84=0,0,0
GGRS87 GRS80 towgs84=-199.87,74.79,246.62
 Greek_Geodetic_Reference_System_1987
NAD83 GRS80 towgs84=0,0,0
 North_American_Datum_1983
NAD27 clrk66 nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat
 North_American_Datum_1927
potsdam bessel towgs84=606.0,23.0,413.0
 Potsdam Rauenberg 1950 DHDN
carthage clark80 towgs84=-263.0,6.0,431.0
 Carthage 1934 Tunisia
hermannskogel bessel towgs84=653.0,-212.0,449.0
 Hermannskogel
ire65 mod_airy towgs84=482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15
 Ireland 1965
nzgd49 intl towgs84=59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993
 New Zealand Geodetic Datum 1949

Custom Coordinate Systems

70

OSGB36 airy towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894
 Airy 1830

+x_0= False easting is added to x value of the Cartesian coordinate. May be used in
most projections except longlat and geocent coordinates.

+y_0= False northing is added to y value of the Cartesian coordinate. See +x_0.

+lon_0= Central meridian. Along with +lat_0, normally determines the geographic origin
of the projection.

+lat_0= Central parallel. See +lon_0.

+k or +k_0= Scale factor at the central meridian. The default value is 1.

+a= Specifies an elliptical Earth’s major axis a.

+b= Specifies an elliptical Earth’s minor axis b.

+es= Defines the elliptical Earth’s squared eccentricity, e2. Optionally, either b=
(minor axis), e= (eccentricity), rf=1/f (reciprocal flatten), or f= (flattening) may be
used.

e2 = (a2 – b2) / a2

+e= Eccentricity.

+f= Flattening. f = (a – b) / a

+rf= Reciprocal Flattening. rf = 1/f

+pm= Prime meridian relative to Greenwich.

+R= Specifies that the projection should be computed as a spherical Earth with radius
R. This parameter takes precedence over the elliptical parameters.

The following radius parameters are used with elliptical Earth parameters. They allow
projections to be computed in the spherical form when specified. For projections that only
perform computations for a sphere, this method is preferable to the default of using the major
axis as the radius.

+R_A Determines that spherical computations be used with radius of a sphere that has a

surface area equivalent to the selected ellipsoid.

+R_V Used with elliptical Earth parameters. Radius of a sphere with equivalent volume

of specified ellipse.

b

a

Custom Coordinate Systems

71

+R_a Used with elliptical Earth parameters. Spherical radius of the arithmetic mean of
the major and minor axis is used. R_a = (a+b)/2

+R_g Used with elliptical Earth parameters. Geometric mean of the major and minor
axis, R_g = (ab)1/2

+R_h Used with elliptical Earth parameters. Harmonic mean of the major and minor

axis, R_h = 2ab/(a+b)

+R_lat_a= Used with elliptical Earth parameters. Spherical radius of the arithmetic mean of
the principle radii of the ellipsoid at latitude R_lat_a is used. +R_lat_g = R_lat_a
can be use for equivalent geometric mean of the principle radii.

+R_lat_g= Used with elliptical Earth parameters. Geometric mean of the principle radii at
latitude R_lat_g See R_lat_a.

+units=name Selects conversion of Cartesian values to units specified by name. When used,
other + metric parameters must be in meters.

 Example: +units=us-ft

Unit
Parameter

Conversion from
meters

Description

km 1000. Kilometer
m 1.0 Meter
dm 1/10 Decimeter
cm 1/100 Centimeter
mm 1/1000 Millimeter
kmi 1852.0 International Nautical Mile
in 0.0254 International Inch
ft 0.3048 International Foot
yd 0.9144 International Yard
mi 1609.344 International Statute Mile
fath 1.8288 International Fathom
ch 20.1168 International Chain
link 0.201168 International Link
us-in 1.0/39.37 U.S. Surveyor’s Inch
us-ft 0.304800609601219 U.S. Surveyor’s Foot
us-yd 0.914401828803658 U.S. Surveyor’s Yard
us-ch 20.11684023368047 U.S. Surveyor’s Chain
us-mi 1609.347218694437 U.S. Surveyor's Statute Mile
ind-yd 0.91439523 Indian Yard
ind-ft 0.30479841 Indian Foot
ind-ch 20.11669506 Indian Chain

Custom Coordinate Systems

72

+geoc When this option is present, it treats the latitude angle of the other coordinate system as
geocentric instead of the normal geodetic. In the diagram below, g is the geocentric latitude
relative to the center of the earth, and is the commonly used geodetic latitude relative to the
tangent line at the earth’s surface at that location.

 It is important to remember that this option treats the other coordinate system as having a
geocentric latitude. This may not make sense for some coordinate systems, so care is
required.

The two latitudes are related by:

 tantan
2

2

a

b
g

+over Inhibit reduction of input longitude values to a range within +/-180degrees of the
central meridian.

b

a

g

Custom Coordinate Systems

73

+towgs84= Datum shifts can be approximated by 3 parameter spatial translations (in
geocentric xyz space), 7 parameter shifts (translation + rotation + scaling), and 10 parameter
shifts (translation + rotation + scaling + point of rotation).

In the 3 parameter case, the three arguments are the translations to the geocentric location in
meters. For example the EPSG database uses the following 3 parameter towgs84 for the
Greek GGRS87 datum to WGS84.

+towgs84=-199.87,74.79,246.62

A 7 parameter example from the EPSG database is used for transforming from WGS72 to
WGS84.

+towgs84=0,0,4.5,0,0,0.554,0.219

Effective Objects provides the following information from the USGS sources. You may
need to refer to additional resources to get complete details in creating +towgs84 parameters.

The seven parameter case uses delta_x, delta_y, delta_z, Rx - rotation X, Ry - rotation Y, Rz -
rotation Z, M_BF - Scaling. The three translation parameters are in meters as in the three
parameter case. The scaling is the scale change in parts per million. For complete details see
EPSG transformation method (trf_method's 9603 and 9606).

In ProLat, the following calculations are used to apply the towgs84 transformation (going to
WGS84). The x, y and z coordinate arrays are in geocentric coordinates. The 7 towgs84
parameters are stored in the array towgs84[]

Three parameter transformation (simple offsets):

 x[i] = x[i] + towgs84[0];
 y[i] = y[i] + towgs84[1];
 z[i] = z[i] + towgs84[2];

Seven parameter transformation (translation, rotation and scaling):

 Rx_BF = towgs84[3]; Ry_BF = towgs84[4];
 Rz_BF = towgs84[5]; M_BF = towgs84[6];

 x_out = M_BF*(x[i] - Rz_BF*y[i] + Ry_BF*z[i]) + towgs84[0];
 y_out = M_BF*(Rz_BF*x[i] + y[i] - Rx_BF*z[i]) + towgs84[1];
 z_out = M_BF*(-Ry_BF*x[i] + Rx_BF*y[i] + z[i]) + towgs84[2];

Note that EPSG method 9607 (coordinate frame rotation) coefficients can be converted to
EPSG method 9606 (position vector 7-parameter) supported by ProLat by reversing the sign
of the rotation vectors. The methods are otherwise the same.

A 10 parameter Molodenski-Badekas example from EPSG Guidance Note number 7, part 2
is used for transforming from La Canoa:

+towgs84= -270.933,115.599,-360.226-5.266,1.238,-2.381,-5.109,2464351.59,-5783466.61,974809.81

Custom Coordinate Systems

74

+nadgrids=file Specify a grid file or list of files to use in shifting a coordinate from a datum to

WGS84.

The convention in ProLat is for a grid file to shift from some datum such as NAD27 to the
NAD83/WGS84 datum. This provides a convenient standard to allow converting between
any coordinate system to another coordinate system, because WGS84 is the common
intermediate datum.

Use of grid shifts is specified using the "nadgrids" keyword in a coordinate system definition.

+nadgrids=ntv1_can.dat

In this case the ntv1_can.dat grid shift file is loaded, and used to get a grid shift value for the
selected point.

When +nadgrids is used, the parameter +datum should not be used. Instead, use the +ellps
parameter, such as +ellps=clrk66. ProLat will use the +nadgrids option for shifting
coordinates, and the +ellps parameter just lets the system know it is a different datum in
order to activate the grid shift file.

It is possible to list multiple grid shift files, in which case each will be tried in turn till one is
found that contains the point being transformed.

+nadgrids=conus,alaska,ntv1_can.dat,hawaii,stgeorge,stlrnc,stpaul

Important: Where grids overlap (such as conus and ntv1_can.dat for instance) the first valid
file found for a point will be used regardless of whether it is appropriate or not. So, for
instance, +nadgrids=ntv1_can.dat,conus would result in the Canadian data being used for
some areas in the northern United States even though the conus data is the approved data to
use for the area. Careful selection of files and file order is necessary. In some cases border
spanning datasets may need to be pre-segmented into Canadian and American points so they
can be properly grid shifted.

Skipping Missing Grids

The special prefix @ may be prefixed to a grid to make it optional. If it not found, the search
will continue to the next grid. Normally any grid not found will cause an error. For instance,
the following would use the ntv2_0.gsb file if available, otherwise it would fallback to using
the ntv1_can.dat file.

+nadgrids=@ntv2_0.gsb,ntv1_can.dat

Custom Coordinate Systems

75

Available Grids

 Extent
Region Parameter East West South North
Conterminous U.S. conus.ncn 131 W 63 W 20 N 50 N
Alaska alaska.ncn 194 W 128 W 46 N 77 N
Hawaii hawaii.ncn 161 W 154 W 18 N 23 N
Puerto Rico and Virgin
Islands

prvi.ncn 68 W 64 W 17 N 19 N

St. George Is., AK stgeorge.ncn 171 W 169 W 56 N 57 N
St. Lawrence Is., AK stlrnc.ncn 172 W 168 W 62 N 64 N
St. Paul Is., AK stpaul.ncn 171 W 169 W 57 N 58 N
Canada ntv1_can.dat

An improved Canadian grid shift file (NTV2_0.GSB) is available for free download from the
NRCan web site at http://www.geod.nrcan.gc.ca/index_e/products_e/software_e/ntv2_e.html.
Save it in the directory with the other ProLat support files. Use “+nadgrids=NTV2.GSB” to
access it.

HARN/HPGN grid files are included with ProLat. See the HARN and HPGN section below
for complete details. Use CoordSys.GetDatums() to get a complete list of datums, which
include the HARN datum definitions.

Custom Coordinate Systems

76

Projection Descriptions

A brief description of selected projections and their parameters are provided in the table below.3
See parameter descriptions above for additional parameter information.

All projections require a parameter to specify the ellipsoid such as +datum=, +ellps=, or +a=
and +rf=.

Projection Parameters Description

tmerc:
Transverse
Mercator

+proj=tmerc
+lon_0=
+lat_0=
+k=

A common projection for large scale maps oriented in north-
south strips. The parameter k is the scale factor at the central
meridian, lat_0. x_0 and y_0 are commonly supplied for false
easting and northing so that the values are not negative.

tmerc with lon_0=90 and 15° grid

utm: Universal
Transverse
Mercator

+proj=utm
+zone=
+south

See discussion of UTM earlier in this manual. For regions
below the equator use the +south without an = sign.

Custom Coordinate Systems

77

omerc:
Oblique
Mercator
Projection

+proj=omerc
+k=
+lat_0=
+no_rot
and either
 +lon_1=
 +lat_1=
 +lon_2=
 +lat_2=
or
 +alpha=
 +lonc=
 [+gamma=]

There are three methods to specify the parameters.
1. With two points (lon_1, lat_1) and (lon_2, lat_2) which will

determine a great circle, central line through each point, or
2. With a point of origin at (lonc, lat_0) and an azimuth alpha,

measured clock-wise from north, of the central line of the
projection.

3. A gamma= option may be added to option 2. to get the Rectified
Skew Orthomorphic (or Hotine Oblique Mercator).

The presence of +alpha= determines which method is used. The
Cartesian coordinates are rotated by –alpha unless +no_rot is
used.
Initialization will fail if control parameters nearly define a
transverse or normal (equatorial) Mercator projection.

lcc: Lambert
Conformal
Conic

+proj=lcc
+lon_0=
+lat_0=
Secant

+lat_1=
+lat_2=

Tangent
+lat_1=
+k_0=

A common projection for large scale maps oriented in east-west
strips. For Secant method, lat_1 and lat_2 are the latitudes of
intersection of the cone with the ellipsoid or sphere. For the
Tangent method, lat_1 is the latitude of tangency of the cone
with the ellipsoid or sphere.

lsat:
LANDSAT

+proj=lsat
+lsat=
+path=

This projection is for use with LANDSAT satellite data and is a
limited form of the more general Space Oblique Mercator
projection. The LANDSAT satellite number, lsat, must be in
the range 1-5, and the path number, path, must be in the ranges
1-251 for lsat=1,2,3, or 1-233 for lsat=3,4. This is the
projection coded by John P. Snyder that started his career with
the USGS.

merc:
Mercator

+proj=merc
+lat_ts=

Used for equatorial regions. +lat_ts is the latitude of true scale.

ups: Universal
Polar
Stereographic

+proj=ups
+south

The UPS projection is a special case polar aspect of the
Stereographic projection designed to cover the regions where
latitude > 84°N or < 80°S. The internal Stereographic
parameters are fixed at k=0.994, lon_0=0, x_0 = y_0 =
2,000,000m, and lat_0 is either 90°N or 90°S when +south is
specified. Also see the UTM projection.

Custom Coordinate Systems

78

ups projection from 74°N to 90°N. Note that center circle of
84°N represents the valid area.

airy: Airy +proj=airy
+lat_b=
+no_cut

The Airy projection is an azimuthal minimum error projection
for the region within the small or great circle defined by an
angular distance, lat_b, from the tangency point of the plane
(lon_0, lat_0). The default value for lat_b is 90° that is suitable
for hemispherical maps. Extent of projection is limited to the
hemisphere unless +no_cut is specified.

krovak +proj=krovak
+ellps=bessel

This projection requires few parameters. Results are negative
with southing in x and westing in y. To get positive values with
westing in x and southing in y, use +krovakrevert.

Custom Coordinate Systems

79

HARN and HPGN

High Accuracy Reference Network (HARN) and High Precision Geodetic Network (HPGN) are
designations used for a statewide geodetic network upgrade. The acronyms HARN and HPGN
refer to the same thing. HARN has been adopted as the official name to reduce confusion. A
HARN is a statewide or regional upgrade in accuracy of NAD 83 coordinates using Global
Positioning System (GPS) observations.

ProLat uses NADCON tables from the United States National Geodetic Survey (NGS) to convert
NAD83 coordinates to HARN coordinates. To convert NAD83 to Kansas HARN, use
ProLatDefineLatLong() as shown in the following example:

To define a Harn/HPGN coordinate system, use CoordSys.GetCS() with a datum containing the
Harn description. Use CoordSys.GetDatums() for a complete list of available dataums.

harnAR = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "NAD83-ARKANSAS-HARN”, “METERS”);

or, using Proj.4

harnAR = CoordSys.GetCS("proj=latlong ellps=GRS80 nadgrids=arharn.hrn");

To convert a different coordinate system such as NAD27, State Plane, etc. to HARN, it is only
necessary to define that coordinate system and ProLatTransform will convert in one step. For
example:

Nad27 = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "NAD27”, “METERS”);
HarnAR = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "NAD83-ARKANSAS-HARN”, “METERS”);
CoordSys.Transform(Nad27, HarnAR, Lon, Lat, Z, 1);

High Accuracy Reference Network Grid Files

ProLat HARN/HPGN grid shift files use the format xxharn.ncn. xx indicates the region. The
.ncn extension indicates a nadcon grid shift file. These tables were prepared directly from
NADCON data and converted to shift to the NAD83 datum to match the ProLat standard of all
grid files shifting to WGS84/NAD83.

 Extents
Area/State File Name Notes East

W
West
W

South
N

North
N

Alabama alharn.ncn 84 90 30 36
Arkansas arharn.ncn 89 95 32 37
Arizona azharn.ncn 108 116 30 38
California (North) cnharn.ncn Above 37 degrees latitude 114 125 36 43
California (South) csharn.ncn Below 37 degrees latitude 113 122 32 37
Colorado coharn.ncn 101 110 36 42
Florida flharn.ncn 80 88 24 32
Georgia gaharn.ncn 80 86 30 36
Guam * guharn.ncn 213 219 13 19
Hawaii hiharn.ncn 154 162 18 24

Custom Coordinate Systems

80

Idaho-Montana (East) emharn.ncn East of 113 degrees longitude 103 113 41 50
Idaho-Montana (West) wmharn.ncn West of 113 degrees longitude 109 119 41 50
Iowa iaharn.ncn 89 98 40 44
Illinois ilharn.ncn 85 92 36 43
Indiana inharn.ncn 81 89 37 46
Kansas ksharn.ncn 94 103 36 41
Kentucky kyharn.ncn 81 90 36 40
Louisiana laharn.ncn 88 95 27 34
Maryland – Delaware mdharn.ncn 74 80 37 41
Maine meharn.ncn 66 72 42 48
Michigan miharn.ncn 82 91 41 48
Minnesota mnharn.ncn 88 98 43 50
Mississippi msharn.ncn 86 92 29 36
Missouri moharn.ncn 88 97 35 42
Nebraska nbharn.ncn 95 105 40 44
Nevada nvharn.ncn 114 121 35 43
New England neharn.ncn CT, MA, NH, RI, VT 69 75 40 46
New Jersey njharn.ncn 70 76 38 44
New Mexico nmharn.ncn 101 110 31 38
New York nyharn.ncn 70 81 40 46
North Dakota ndharn.ncn 95 105 45 50
Ohio ohharn.ncn 80 86 38 43
Oklahoma okharn.ncn 94 104 33 38
Pennsylvania paharn.ncn 74 82 39 44
Puerto Rico-Virgin Is pvharn.ncn 62 68 17 21
Samoa * (Eastern Is) esharn.ncn Islands of Ofu, Olosega, Ta'u 165 171 14 20
Samoa * (Western Is) wsharn.ncn Islands of Tutuila and Aunu'u 165 171 14 20
South Dakota sdharn.ncn 95 105 41 47
Tennessee tnharn.ncn 81 91 34 37
Texas (East) etharn.ncn East of 100 degrees longitude 88 100 25 35
Texas (West) wtharn.ncn West of 100 degrees longitude 99 107 25 37
Utah utharn.ncn 107 115 36 43
Virginia vaharn.ncn 75 84 36 40
Washington – Oregon woharn.ncn 116 125 41 50
West Virginia wvharn.ncn 77 84 36 41
Wisconsin wiharn.ncn 86 94 42 48
Wyoming wyharn.ncn 104 112 41 46

* Guam and American Samoa never went through the intermediate step of island datum to
NAD83. Those islands were adjusted directly from their old island datums (Guam 1963 and
American Samoa 1962) to HPGN. Consequently, positions computed on the island datums are
considered to be NAD83 for the input/output purposes.

There are no HARN grid files for Alaska, North Carolina, and South Carolina.

81

Troubleshooting

Commonly encountered problems and solutions:

Problem Solution
ProLatNet.dll was not found. The file prolatnet.dll was not found by the application. The

file prolatnet.dll should be located in the same directory as
the applications executable file or in sub-folder.

The file ProLatNet.dll does not need to be registered. It is
generally found relative to the executable.

Error: -38 Failed to load
NAD27-83 correction file.

 The conversion requires a datum shift and ProLat was not
able to find a NADCON grid file to perform the shift. There
are two common reasons for this error.

1. The NADCON grid shift files could not be found.
2. The given coordinate point is outside the boundaries

of the NADCON grid shift files. Check the
coordinates, units, parameters, and lat-long / long-lat
ordering. A negative value is needed for West and
South directions. If using GetDMS, check that the
proper coordinate syntax is used.

The return values are infinite
(maximum possible value)

 The algorithms detected a problem and returned the
maximum possible double float value so that the results
would not be inadvertently used. Check the ProLatErrNo
and ProLatErrMsg for additional details. Check the
parameters, units, and lat-lon / lon-lat order. A negative
value is needed for West and South directions.

The values are close but a
little off from my reference
control points.

 It is highly recommended to use reference control points in
any conversion project. This allows you to make sure
ProLat is configured properly for the desired conversion.
For example, in lat-lon to State Plane, a control point would
have a coordinate in lat-lon format and its known
corresponding coordinate in State Plane format. A ProLat
conversion should match very closely – within 1 cm or mm
depending on the type of conversion.

If you suspect it does not match, check the parameters
carefully. Common problems include units, lat-lon / lon-lat
order, datum shift needed, negative value is needed for West
and South directions, etc.

82

License

ProLat for .Net may be used on one single computer within your company without charge. This
is typically a development computer. Each additional computer requires a purchased license of
ProLat for .Net regardless how how the software is transmitted to that computer. If ProLat for
.Net is used on a server PC that delivers services to other PCs, a ProLat for .Net server license is
required.

83

References

1. http://www.ngs.noaa.gov/faq : National Geodetic Survey – Frequently Asked Questions

2. Snyder, Map Projections – A Working Manual, U.S. Geological Survey Professional Paper
1395.

3. Gerald Evenden, Cartographic Projection Procedures for the UNIX Environment – A User’s
Manual, USGS 1995

