effective objects

ProLat™
Coordinate Conversion Toolkit

Includes:
ProLat for .NET pure managed library

User’s Manual
Version 5.24
Updated 2020 December 30

Copyright © 2013-2019 Effective Objects. All rights reserved.

No part of this manual, including the products and software described in it, may be reproduced in
any manner whatsoever, except by the purchaser for backup purposes, without the written
permission of Effective Objects.

Effective Objects and ProLat for .Net are trademarks of Effective Objects. Products and
corporate names appearing in this manual may or may not be registered trademarks or copyrights
of their respective companies, and are used only for identification or explanation and to the
owners’ benefit, without intent to infringe.

License Agreement

Please see the file ProLatLicense.pdf for the license agreement for this software. If you do not
agree with the license agreement, please do not use this software product.

Table of Contents

INETOAUCTION ...ttt b e s et et e bt e et e e bt e sab e et e e saeeeabeenbeesaeeenne 5
GEING SEATLEAeeeiiieeieeie ettt ettt et e et e e be e tee et e e beeeabeenbeenseesnseenseesnseenseenneans 5
Defining Coordinate SYSIEIMSc.uvieeiieeiiieeiieesiee et e eieeesteeestreeesteeeseseeessaeessseeessseeensseessseeessseennes 6
Geodesy Coordinate System Databasec.cccueevuieriieiiienieeie ettt 6
Geodesy functions to define a coordinate SYSteM.........cc.eeveuiieriuiieriiieeiiie e e e 6
GTOUPS -ttt ettt ettt ettt e ettt e st e e e et e e e ab e e s bt e e sabee e abeesasbeesabteeeabeeenbeesanteesabeeennneean 7

N A1 15711 SO USRRRRSPPSRNE 8
DIAtUIMS ...ttt ettt et ettt et a e et b e st b e s et eenaeeeas 9
UTIIES -ttt h et h e et e b e e h et e a bt e bt e e et e e bt e bt e et e e bt e eab e et e e e heeeabeenbeeeareenne 9
Using Proj.4 Compatible Definition StringsS.........cccceevieriieriieniienieeieeieesie e 10
PTOJECTIONS. ...ttt ettt e et e e st e e et e e etaeessbeeesaeeensaeessseeesseeenseeeenseeenns 11
Customizing the Coordinate System Database...........cceecuierieiiiieniieiiiiieeieeie e 12
How Does ProLat Internally Perform Conversions?ccceeeveeeviieeeieeeiieeeieesveeeiveesveeesneens 12
What is @ Coordinate SYSEM?cccuiiiiiiiieiieiieeie ettt ettt et e s ae et e e naeesnaeeneeas 13
WHhat 18 @ DatUm? ..ottt sttt e st e et eaeas 13
Other Datum Conversion Methodscooiiiiiiiiiiiinieeie e 15
WHhat 1S @ PTOJECTIONT ...eeiiiiieeiiieciee ettt et e et e e e s te e e aeeesseeessseeesaeesssaeesnseeenns 16
The Universal Transverse Mercator (UTM) Coordinate Systemccccceeeveeriierienieennens 17
State Plane Coordinate SysStem (SPCS) ...cooviieiiiieiieee et 19

The Geocentric ECEF XYZ Coordinate SYStemccceevieriieiiieniienieeiesie e eiee e evens 21
RediStributable FIIEScc.uiiiiiiiieee ettt st 22
Programming in Windows .Net ENVIrONmMents...........cccoevviiiiieniieniieiiienieeieeiee e 23
Steps for Visual Studio and WINAOWS 8ccovieeiiieiiiieiieeeeee e 23
Windows Phone 7 and 8cooioiiiiiiiiiiiie et 23

NS 2513111 o] (T RS R 24
Using ProLat for .INet fUNCHONSccoiiiiieiieiie ettt 24

Net Class and Function Reference............occuoiiiiiiiiiiiiiiiiieeeeeeeeeee e 25
CIaSS COOTASYS ..entieiieeiieeeiie ettt et et e et eebeesttesabe e bt e sateenseessaeesseenseessseenseenseesssesseennnanns 25
Class DMS - Text Coordinate Parsing Classcceeeeveeeiiieiniiieeiiie e 26
Testing and VErifiCaAtiONcccueeiieiiiiiiieiiecie ettt ettt et ee et e eseeseseeneeas 26
CoordSys Method REfETeNCecocuiiieiiiieiiieciie ettt 27
GEECS ettt ettt h et a e bt h et ea e bt et eh et e e be et naeen 27
TTANSTOTII ...ttt ettt et be e st e b e saeeeaeeas 29

INCE EXAIMPLES: ..ottt ettt ettt e et e st e e sbe e taeenbeenbeensaeenseeneennns 30
WIN32 EXAMPIES: . .viiiiiiieiiecieece ettt ettt e et e st e e s ae e e saaeeeaaeesnseeessseesnnaeennnes 30
ANAroid EXamPIEs:cc.ooiiiiiiiiieeiieieee ettt ettt ettt eebe e es 30
CoordSys.AddFileLocationASSEMDbLYccccueieiiiiieiieeiiie e e 32
CoordSys. AddFileLocationFOLdercciiiiiiiiiiieeieeeeeee e 33
(O1070) (s N S € 1511 25 4’0 A\ SRS 34
CoordSys.GetGroups and related fUNCHioNS.ccuievuieeiiiiiienieeieeeeee e 35
CoordSys.GetProjNames and related fUnCtions...........cccveeeviiieiiieccieeeee e 35

FOT WIN32 .ttt ettt ettt et b et ebe et st e bt eaesaeens 35
EIPSOIAINVETSE ..uvvieiiiieiie ettt et ettt e e ae e et e e ssaeeesaaeeeaaeesnseeesnsaesnnseeennes 36
EIIPSOIAFOIWATA.coiiiiieiii ettt ettt e et eebeesnaeeaseas 38
SCAlECONVETZEICE ... eeeeiieeeiiieeiieeeieeeeiee et e et e e sbeeesaaeeetaeesseeessseeesseesssaeessseesnsseesnsseensseens 39
GEIDMS .ttt ettt ettt h et et b et h ettt ae et naeen 40
GEtDMSSINGIC......eiiiiieeeee et e e e st e et e e era e e e ae e e e nbeeenabeeeneeeennes 43
GEELAL ..ttt ettt ettt ettt e ean e b 44

(€ <11 7o) s TSRO TP PRSP PR SPPPRR 44

MGRS Military Grid Reference System FUnctions...........ccccceeevveeiienieeiiieniesieenieeieeeeeeen 45
Programming in Windows 32/64 Native EnVIronments...........cccceccveeeieeeiieeeciieerieeeieeesvee e 47
SEtUP INSEIUCTIONS. ...euvieiieeiiieiie ettt ettt ettt e et eestee et eesbeessaeeabeesseesssesnseenaeesnseenseensnaens 47
Steps for using ProLat in VB6, Excel, Word, and AcCCeSS.......c.cceevveervuiierieeeiiieeiieeeee e, 47
Steps for using ProLat in Gooiiiiiicecee et e 47
FUNCHION RETETEINCEeviiiiiieeiieeeeee ettt ettt e e s e e ssbeeesaseeenaae e 48
ProLatDefineGeodesy and ProLatDefineDefccccoooiiiiiiiiiiniiiiicieeee e, 48
ProLatTranS oM.cccuiieieeciie ettt e e e eae e s aee e aaeeenaeeenneeennns 50
PrOLAtCIOSE. ... vttt ettt ettt e ettt e st e et e et e enb e e b e e snbeebeenaeeenbeenseas 51

50 0] B 116 1511 25 o OSSPSR 51
PrOLAtSIIETT ...ttt et st e e e e at e s abee e eans 51
ProLatSetFilePathccooiiiiiiee e e 51
ProLatEIlIPSOIAINVEISEcovuvieiieiieeiiieiieeiie ettt ettt ettt st eebeeseaeennees 52
ProLatScaleCONVETZEICEccuuiieiiieeiieeiieeeieeeetee ettt e et eeste e et e e e e eseaeesaaeeseseeessseeenneesnnes 53
ProLatGetDIMS ...t ettt ettt e st e et e e e e eanes 54
ProLatGetDIMSSINGIEc.oiieiieie e e 57
ProLatGetLat.......cc.oi i ettt 58

o 0] I 1€ 11 70 s R URPRR 58
ProLatDIMSFOIMALooiiiiiiiiiieiie ettt ettt e et eebeeeeans 59
Reading and Writing PRJ and WKT files.........cocuiiiiiiiiiiiiiieeeeee et 61
ProLatConvVertPRITOSIEcooiiiiieeee et e 61
ProLatConvertStrTOESRI.......coooiiiie e 62
ProLatConvertStrTOWK Toiiiiee et e 62
ProLatConvertHandleTOSIIccuviiiieeeeeee et e 63
ProLatX ACtIVEX DLoooiiiiieiieiit ettt ettt et ettt e et eeabeenseensaeenseas 64
List of ProLatX Methods and Propertiescccueervieeiiieeiiieeiiecee et 65
Creating DMS Values From Decimal Values...........ccccoeoieiiiiiiiiiiiniieiiceeeeee e 66
Custom CoOrdiNate SYSTEIMISccvueiriieiiieeeiieeeiteeeeiteeertteeeteeesteeessreesssaeesseeessseeessseesnseeesseeenns 67
Example Coordinate System Definitioncccueevuierieeiienieniieieesie et 67
Required Parametersc.eeeiiieeiieeciie ettt ettt e e e et e e s e e eeenne e e 67
ParameEter LiSt......cooiieiieeieeieeeeee et ettt ettt et et e enaeenneas 67
Projection DESCIIPHIONS ...c.uviieiiieeiieeetie et e etee et e ettt e et e e e e ereeeebeeesaaeeeaaeessseeessseeensneennnes 76
HARN and HPGN......ooiiiiiiiiiiieee ettt ettt ettt s 79
TrOUDIESNOOINGveieiieeie ettt e e e e et e e s tbeeetaeessseeessseeesssaessseaensseennes 81
LLICEIISE .ttt ettt ettt ettt e st e bt e b e et e et e e e tteenb e e beeenb e et e e taeenb e e bt e enbeenbeeseeenreenreas 82
RETETEICES ... et e ettt e s e e s e e et eesaaeesaseeensseesnsseesnsaeennseeens 83

Introduction

ProLat provides a complete managed coordinate conversion library for .Net, Win32/64, and
Android environments. The coordinate conversion results are carefully tested against
government sources so you are ensured of the most accurate results possible.

Pure managed code for C# .Net, VB .Net, C++/CLI. Works with Windows 7, 8, RT, and
Window Phone 7 and 8

Native code for Win32 and Android. Works with VB6, Visual Studio, and Android Java.
Easy to define coordinate systems

One step translation between any of the supported coordinate systems

Datum to datum conversions (Over 300 datums including HARN)

UTM, State Plane, Geocentric (ECEF/XYZ), and many more projections

Custom coordinate systems and projections with unlimited parameters

Great Earth distance and direction calculations

Scale and angle of convergence calculations for all projections

Well documented with examples in this manual

Getting Started

Install the software by uncompressing the zip file into an empty folder such as C:\ProLat,
or an empty user folder.

Try the examples located in the folder for the desired platform.

Add the functions to your program or use an example as a starting point

Test carefully

Ensure that the functions can find the supporting files when distributing the software

It is suggested to read the section on “Defining Coordinate Systems” first. Next, jump to the
chapters for your specific platform for examples and function documentation.

The different platforms have very similar functionality, but the syntax and function names may
vary. The general coordinate conversion information applies to all platforms.

Defining Coordinate Systems

A coordinate system in ProLat is a set of parameters that defines the essentials needed to know
about a set of coordinate data points in order to convert them to another coordinate system.
Generally it is easy to define a coordinate system, and the beauty is that ProLat can figure out
exactly what is needed to convert between any two given coordinate systems.

In ProLat there are two ways to define a coordinate system.

1. Geodesy coordinate system database with four parameters: Group, System, Datum,
and Units. This method offers easy selection and is self descriptive. It ensures that all
elements of a coordinate system are specified. It is used by professionals in many fields.

An example: UTM, UTM-15N, WGS84, METERS

2. Proj.4 parameter definition Use this method for existing Proj.4 definitions, or for
creating custom coordinate systems. It is flexible, although it may be harder to learn.

An example: proj=utm zone=15 datum=WGS84

The following sections provide more details of defining coordinate systems.

Geodesy Coordinate System Database

ProLat introduces a professional Geodesy database of commonly used coordinate systems. It is
likely to contain the desired coordinate system such as UTM, State Plane, etc. It also has a
comprehensive selection of datums and units. It may be customized to include new coordinate
systems. For info, see the section titled “Customizing the Coordinate System Database.”

To specify a coordinate system, four simple strings are needed: 1. Group (UTM etc.); 2. System
within the group (UTM-17N etc.); 3. Datum (WGS84 etc.); and 4. Units (METERS etc.).

See the Examples folder for sample calculators that show how to load the group and system lists.

Geodesy functions to define a coordinate system

By using the group, system, datum, and units parameters, a complete coordinate system may be
defined. ProLat can convert any valid coordinate system to any other coordinate system with the
function, CoordSys.Transform().

ProLat for .Net
C#:
CoordSys latlong
CoordSys utml?7 =

= CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS");

VB.Net:
Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS")
Dim utml7 as CoordSys = CoordSys.GetCS("UTM", "UTM-17N", "WGS84", "METERS")

C++/CLI:
CoordSys” latlong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
CoordSys” utml7 = CoordSys::GetCS("UTM", "UTM-17N", "WGS84", "METERS");

ProLat for Win32
C++ / VB6 / etc.

LL = ProLatDefineGeodesy("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

ProLat for Android

Java

CoordSys latlong = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

Groups

A complete list of groups can be found with the function CoordSys.GetGroups() or .

LAT LONG

UTM

US SPC27

US SPC83

ECEF

Argentine Coordinate Systems
AUSTRALIA

Australian_ISG
Australian MGA Coordinate System
Austrian_Coordinate _Systems
Bahrainian_Coordinate Systems
BELGIAN

BORNEO

BRITISH

Chad_Coordinate Systems
COLOMBIA
Egyptian_Coordinate Systems
FRANCE
Ghanaian_Coordinate Systems
GK PULKOVO

GK3TM

GK6TM
Hungarian_Coordinate Systems
Indian_Coordinate Systems
Iraq_Coordinate Systems
Krovak

Libyan Coordinate Systems
Malaysian RSO_Grids

New Zealand Transverse Mercator
NEWZEALAND
Nigerian_Systems

NZMG

Peruvian_Systems

QATAR

QMTM

QMTM_NAD27

ROMANIAN
Netherlands_Systems
Swiss_Coordinate Systems
BLM

MICHIGAN OLD

Geodetic Latitude / Longitude
Universal Transverse Mercator

US State Plane 1927

US State Plane 1983

XYZ Cartesian ECEF

Argentine Coordinate Systems
Australian AMG Coordinate Systems
Australian ISG Coordinate Systems
Australian MGA Coordinate System
Austrian Coordinate Systems
Bahrainian Coordinate Systems
Belgian Coordinate Systems

Borneo RSO Grids

British Coordinate Systems

Chad Coordinate Systems

Colombia Coordinate Systems
Egyptian Coordinate Systems

French Coordinate Systems
Ghanaian Coordinate Systems

Gauss Kruger (Pulkovo 1942) Coordinate Systems
Gauss Kruger 3TM Coordinate Systems
Gauss Kruger 6TM Coordinate Systems
Hungarian Coordinate Systems
Indian Coordinate Systems

Iraq Coordinate Systems

Krovak Oblique Conic Conformal
Libyal Coordinate Syatems
Malaysian RSO Grids

New Zealand TM Coord. Sys.

New Zealand Coordinate Systems
Nigerian Systems

New Zealand Map Grid

Peruvian Systems

Qatar Coordinate Systems

Quebec Modified TM Coordinate Systems
Quebec Modified TM NAD27
Romanian Coordinate Systems
Netherlands Coordinate Systems
Swiss_Coordinate Systems

GOM

Michigan Older NAD27 TM

Systems

For each group there is a list of systems in the group. Use the function
CoordSys.GetSystems(group) to get a list of systems within a group.

For example the group, UTM, has 60 zones and the State Plane group, US_SPCS83, has a list of
states and zone systems. Here are a few samples of common groups and systems.

Group:
Systems:

Group:
Systems:

Group:
Systems:
AK83-1
AK83-10
AK83-2
AK83-3
AK83-4
AK83-5
AK83-6
AK83-7
AK83-8
AK83-9
AL83-E
AL83-w
AR83-N
AR83-S
AZ83-C
AZ83-E
AZ83-w
CA83-1
CA83-2
CA83-3
CA83-4
CA83-5
CA83-6
C083-C
C083-N
C083-s
CcT83
DES83
FL83-E
FL83-N
FL83-w
GA83-E
GA83-w
HI83-1
HI83-2
HI83-3
HI83-4
HI83-5
IA83-E
IA83-W
ID83-C
ID83-E
ID83-W
IL83-E
IL83-w
I083-N
I083-S

LAT_LONG (standard latitude/longitude degrees)

LAT-LONG

UTM (Universal Transverse Mercator)

UTM-01N

UTM-02N

UTM-01Ss

uTM-02S

US_SPC83 (Sstate Plane Coordinate System NAD83)
Alaska zone 1 KS83-N Kansas Northern zone
Alaska zone 10 KS83-S Kansas Southern zone
Alaska zone 2 KY83 Kentucky Single Zone
Alaska zone 3 KY83-N Kentucky Northern Zzone
Alaska zone 4 KY83-S Kentucky Southern zone
Alaska zone 5 LA83-N Louisiana Northern Zone
Alaska Zone 6 LA83-0 Louisiana Offshore zZone
Alaska zone 7 LA83-S Louisiana Southern Zone
Alaska zone 8 MA83-I Massachusetts Island
Alaska zone 9 MA83-M Massachusetts Mainland
Alabama Eastern Zone MD83 Maryland
Alabama Western Zone ME83-E Maine Eastern Zone
Arkansas Northern zone ME83-W Maine western Zone
Arkansas Southern ZzZone MI83-C Michigan Central Zone
Arizona Central Zone MI83-N Michigan Northern Zzone
Arizona Eastern Zone MI83-S Michigan Southern Zone
Arizona Western Zone MN83-C Minnesota Central Zone
California zone I MN83-N Minnesota Northern Zzone
california zone II MN83-S Minnesota South Zone
california zone III MO83-C Missouri Central Zzone
california zone IV MO83-E Missouri Eastern Zone
california zone Vv MO83-W Missouri Western Zone
California zone VI MS83-E Mississippi Eastern
Colorado Central Zzone MS83-w Mississippi Western Zone
Colorado Northern Zone MT83 Montana
Colorado Southern Zone NC83 North Carolina
Connecticut ND83-N North Dakota Northern Zone
Delaware ND83-S North Dakota Southern Zone
Florida Eastern Zone NE83 Nebraska
Florida Northern Zzone NH83 New Hampshire
Florida western ZzZone NJ183 New Jersey
Georgia Eastern Zone NM83-C New Mexico Central Zone
Georgia Western Zone NM83-E New Mexico Eastern Zone
Hawaii Zone 1 NM83-w New Mexico Western Zone
Hawaii Zone 2 NV83-C Nevada Central Zone
Hawaii Zone 3 NV83-E Nevada Eastern zZone
Hawaii Zone 4 NV83-w Nevada Western Zone
Hawaii Zone 5 NY83-C New York Central zone
Indiana Eastern Zone NY83-E New York Eastern Zone
Indiana wWestern Zone NY83-1 New York Long Island Zzone
Idaho Central Zzone NY83-w New York western zZone
Idaho Eastern Zone OH83-N oOhio Northern zone
Idaho western Zone OH83-5S ohio Southern zone
ITlinois Eastern Zone OK83-N OkTahoma Northern zone
I1Tinois wWestern Zone 0K83-s Oklahoma Southern zone
Iowa Northern Zzone OR83-N Oregon Northern Zone
Iowa Southern Zzone OR83-S Oregon Southern Zone

PA83-N
PA83-S
PRVIS83
RI83
SC83
SD83-N
SD83-s
TN83
TX83-C
TX83-N
TX83-NC
TX83-S
TX83-SC
uT83-C
UT83-N
UT83-5S

Pennsylvania Northern ZzZone
Pennsylvania Southern
Puerto Rico, Vvirgin Islnds
Rhode Island

South Carolina

South Dakota Northern Zone
South Dakota Southern Zzone
Tennessee

Texas Central zZone

Texas Northern zone

Texas North Central Zzone
Texas Southern zone

Texas South Central Zone
Utah Central Zone

Utah Northern zone

Utah Southern zone

VA83-N
VA83-S
vT83
WA83-N
WA83-S
WI83-C
WI83-N
WI83-S
WV83-N
wv83-s
WY83-E
WY83-EC
wy83-w
wY83-wC

virginia Northern Zone
virginia Southern Zzone
vermont

washington Northern Zone
washington Southern Zone
wisconsin Central ZzZone
wisconsin Northern Zone
wisconsin Southern Zone
wWest virginia Northern
West virginia Southern
Wyoming Eastern Zone
wyoming East Central Zone
Wyoming Western Zone
wyoming west Central Zone

For other groups use CoordSys.GetSystems(group) to get a list of systems.

Datums

Over 300 of the most commonly used datums are provided. Use the function

CoordSys.GetDatums() to get a list of available datums. Unlimited additional datums can be
created with any ellipsoid and conversion method. ProLat for .Net provides advanced datum
shifting capabilities with grid shifts and 3,7 and 10 parameter Molodensky-Badekas methods.

A few common datums include WGS84, NAD27, NAD&3, NAD83-ALABAMA-HARN, and
many others.

Units

Use the function CoordSys.GetUnits() to get a list of available units.

Unit Description
BENOIT CHAINS Benoit's Chain
BENOIT LINKS Benoit's Link
CENTIMETERS Centimeter
CHAINS Chains

CLARKE CHAINS Clarke's chains
CLARKE FEET Clarke's Feet
DECIMETERS Decimeter

FEET Interntn] Feet
GUNTER CHAIN Gunter's Chain
GUNTER LINKS Gunter's Link
INCHES Interntn]l Inch
INDIAN YARD Indian Yard
INTERNATIONAL MILES Interntnl Mile
KILOMETERS Kilometer
LINKS Links

METERS Meter

Unit

MILLIMETERS
NAUTICAL MI

PERCH

POLE

RODS

SEARS CHAIN
SEARS LINKS
SEARS YARD
TENTHFEET
TENTHUSFEET
U.S. SURVEY
USFEET
USINCHES
YARDS

Yard

Description

MiTllimeter
LES International
Nautical Mile
Perch
Pole
Rod
S Sear's Chain
Sear's Link
Sear's Yard
1/10 Feet
1/10 USFEET
MILES U.S. Survey Mile
US survey Feet
U.S. Survey Inch
International

Using Proj.4 Compatible Definition Strings

ProLat for .Net
C#:
Coordsys latlong = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”);

VB:
Dim Tatlong As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”)

ProLat for Win32
C++ / VB6 / etc.
LL = ProLatDefineDef(+proj=utm +zone=17 +datum=wGS84);

ProLat for Android

Java
CoordSys latlong = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”);

Note that in ProLat the plus sign (+) before each parameter is optional.

Defining a coordinate system with a Proj.4 string requires three basic elements.

1. A “proj=" parameter and relevant parameters for that projection. Some projections such
as “proj=latlong” and “proj=geocent” have no additional parameters. Most projections,
however, have lat 0=, lon 0=, x 0=, y=0 to specify central latitude, central longitude,
and an offset. See additional parameter information near the end of this manual.

2. Datum information. A datum contains the ellipsoid, the method used to convert to the
WGS84 datum, and the position of zero degrees. An ellipsoid defines the shape of the
earth that is used. Coordinates in one datum will land in a different place than the same
coordinates in a different datum. It is possible to convert coordinates in one datum to a
different datum using either a formula (towgs84= parameters) or with a grid lookup file
(nadgrids= parameter). The zero degree position defaults to Greenwich. Some
coordinates have a different zero position specified with the “pm="parameter.

3. The units. For latitude/longitude coordinates, the units default to degrees. For XY
projections, the units default to meters. Use the “units=" or “to_meter="parameter to
specify the units.

In summary, make sure the coordinate system specifies the projection, datum, and units.

10

Projections

ProLat includes the following projections for use in a Proj.4 definition. This represents a
comprehensive list of projections. If the needed projection is not available, contact Effective

Objects.

aea
aeqd
airy
aitoff
apian
august
bacon
bipc
boggs
bonne
cass
cc

cea
chamb
collg
crast
denoy
eck1
eck2
eck3
eck4
eckb5
eck6
eqc
eqdc
fahey
fouc_s
gall
geocent
geos
gins8
gn_sinu
gnom
goode
gs48
gs50
gstmerc

hammer
hatano
kavb
kav7
krovak
latlong

Icc
Icca

leac

Albers Equal Area

Azimuthal Equidistant

Airy

Aitoff

Apian Globular |

August Epicycloidal

Bacon Globular

Bipolar conic of western hemisphere
Boggs Eumorphic

Bonne (Werner lat_1=90)
Cassini

Central Cylindrical

Equal Area Cylindrical
Chamberlin Trimetric
Collignon

Craster Parabolic

Denoyer Semi-Elliptical
Eckert |

Eckert Il

Eckert Il

Eckert IV

Eckert V

Eckert VI

Equidistant Cylindrical
Equidistant Conic

Fahey

Foucaut Sinusoidal

Gall Stereographic
Geocentric, ECEF, XYZ
Geostationary Satellite View
Ginsburg VIII (TsNIIGAIK)
General Sinusoidal Series
Gnomonic

Goode Homolosine

Mod. Stererographics of 48 U.S.
Mod. Stererographics of 50 U.S.
Gauss-Schreiber Transverse Mercator
(aka Gauss-Laborde Reunion)
Hammer & Eckert-Greifendorff
Hatano Asymmetrical Equal Area
Kavraisky V

Kavraisky VI

Krovak projection
Latitude/Longitude (non-projected)
(latlon, lonlat, longlat)
Lambert Conformal Conic
Lambert Conformal Conic
Alternative

Lambert Equal Area

lee_os
loxim
Isat
mbt_s

mbt_fps
mbtfpp

mbtfpq
mbtfps

merc
mil_os
mill

moll
murd1
murd2
murd3
natearth
nell
nell_h
nicol
nsper
nzmg
ob_tran
ocea
oea
omerc
ortel
ortho
pconic
poly
putp1
putp2
putp3
putp3p
putp4
putp4p
putp5
putpSp
putp6
putpbp
qua_aut
rhealpix
robin
rouss

rpoly

Lee Oblated Stereographic
Loximuthal

Space oblique for LANDSAT
McBryde-Thomas Flat-Polar Sine
(No. 1)

McBryde-Thomas Flat-Pole Sine
(No. 2)

McBride-Thomas Flat-Polar
Parabolic

McBryde-Thomas Flat-Polar Quartic
McBryde-Thomas Flat-Polar
Sinusoidal

Mercator

Miller Oblated Stereographic
Miller Cylindrical

Mollweide

Murdoch |

Murdoch I

Murdoch I

Natural Earth

Nell

Nell-Hammer

Nicolosi Globular

Near-sided perspective

New Zealand Map Grid
General Oblique Transformation
Oblique Cylindrical Equal Area
Oblated Equal Area

Oblique Mercator

Ortelius Oval

Orthographic

Perspective Conic

Polyconic (American)

Putnins P1

Putnins P2

Putnins P3

Putnins P3’

Putnins P4

Putnins P4’

Putnins P5

Putnins P5’

Putnins P6

Putnins P6’

Quartic Authalic

rHEALPix

Robinson

Roussilhe Stereographic
Rectangular Polyconic

11

sinu
somerc
stere
sterea
tcc
tcea
tissot
tmerc
tpeqd
tpers
ups
urm5
urmfps
utm
vandg

Sinusoidal vandg2 van der Grinten Il

Swiss Oblique Mercator vandg3 van der Grinten llI
Stereographic vandg4 van der Grinten IV
Oblique Stereographic Alternative vitk1 Vitkovsky |
Transverse Central Cylindrical wag1 Wagner | (Kavraisky VI)
Transverse Cylindrical Equal Area wag2 Wagner II

Tissot wag3 Wagner Il
Transverse Mercator wag4 Wagner IV

Two Point Equidistant wagd Wagner V

Tilted perspective wag6b Wagner VI
Universal Polar Stereographic weren Werenskiold |
Urmaev V wink1 Winkel |

Urmaev Flat-Polar Sinusoidal wink2 Winkel Il
Universal Transverse Mercator wintri Winkel Tripel

van der Grinten |

Customizing the Coordinate System Database

It is possible to add your own special coordinate system definitions to the standard ProLat
definitions. Use the following steps:

1.

3.
4.

How

Look in the geodesy folder for Group.txt, Datums.txt, Units.txt, etc. The
ProlatWindows.dll file includes a copy of all these files internally. However, you can tell
ProLat to use an external copy by calling the function
CoordSys.AddFileLocationFolder(foldername). Make a copy of the geodesy folder that
you can customize. Then pass the path to this folder to AddFileLocationFolder(). Now
ProLat will use the definitions from the folder instead of the internal data.

Edit Group.txt. Notice that each line corresponds to a system file with the Name field
with .txt extension. For example, the UTM system has a corresponding UTM.txt file.
You can add a new system to Group.txt by copying an existing line and changing the
strings. If you do this to add a new system, be sure to create a corresponding .txt file. For
example, copy AUTRALIA. txt to MySystems.txt and edit the new file with your own
definitions.

You don’t have to create a new system in Group.txt. It is ok to edit one of the system files
such as AUSTRALIA.txt and edit/add definitions there. It depends on what works best
for your application.

Add new datums by editing Datums.txt. Add new ellipsoids by editing Ellipsoids.txt.
ProLat creates a coordinate definition by combining the sub definitions from the selected
system, the Datum/ellipsoid, and the units. This is useful to know, for example, if your
custom definition needs a special datum. In this case add the special datum to Datums.txt
instead of directly in MySystems.txt.

Does ProlLat Internally Perform Conversions?

Internally, ProLat uses a well defined conversion method to convert between any two coordinate
systems. It is not necessary to know following details to use ProLat, but it may help in
understanding how it works.

1.
2.

Scale units to meters (for most projections).
Convert the coordinate from the source projection to latitude/longitude

12

3. If'the destination coordinate system is in a different datum, perform a datum shift.
a. NAD27 to NAD83/WGS84 uses NADCON grid shift tables
b. Other datums use a set of towgs84 (pronounced “To WGS84”) parameters to
convert to WGS84 and then to the destination datum. (This process involves an
intermediate conversion to geocentric Xyz coordinates.)
4. Project the new latitude/longitude to the destination projection.
5. Scale to the destination units.

What is a Coordinate System?

A coordinate system consists of a set of parameters that defines how a coordinate in space is
produced. For example, a GPS unit calculates an XYZ position relative to the center of the
Earth. Then, the GPS converts that value to a latitude, longitude, and height based on an
estimate of the size and shape of the earth called an ellipsoid. A surveyor may need to convert
the latitude longitude coordinate to the State Plane Coordinate system, which uses either a
Transverse Mercator projection or a Lambert Conformal Conic projection.

If we analyze the steps in the preceding paragraph, a coordinate system needs to know the
ellipsoid parameters and the projection parameters. If the ellipsoid is not the WGS84 ellipsoid,
there is one more parameter needed to define how to convert to the WGS84 ellipsoid. The
conversion to another ellipsoid is done with a datum grid shift file or with a mathematical
translation.

By having the ellipsoid, projection, and WGS84 translation parameters a complete coordinate
system is formed. See the examples of coordinate systems in various sections of this manual.

What is a Datum?

A datum consists of a a set of parameters that define how is defined by a set of constants
specifying the coordinate system used for geodetic control, i.e., for calculating the coordinates of
points on the Earth.! With ProLat, it is not necessary to know the specific parameters of a
datum. It is only necessary to determine the datum name used for the available coordinate points
and specify that name in the GetCS() method. It is possible to use raw parameters if desired.

The function CoordSys.GetDatums() produces a list of available datum names. ProLat also can
use the Proj.4 definitions as NAD27, NAD83, WGS§84.

Using a datum name, ProLat looks up the specific parameters that define the datum. A datum
has constants for an ellipsoid that defines the shape of Earth considering it closely matches an
ellipsoid rather than a perfect sphere. An ellipsoid is usually specified by the semi-major axis,
“a=", and the reciprocal flattening, “rf=". The standard 0 degree of most datums is at
Greenwich. A datum that starts elsewhere can use the “pm=" parameter. A datum also specifies
how to convert to the universal reference datum of WGS84 using the “nadgrids=" parameter or
the “towgs84="" parameter. See documentation for these parameters near the end of the manual.

13

To summarize, the ellipsoid and the details of how to convert to the WGS84 datum are what
defines a datum.

Why is there more than one datum? The use of satellites and other technological improvements
in surveying have allowed refinement in the knowledge of the shape of the Earth. Along with
these refinements came the process of standardizing the definition of the approximating ellipsoid
and establishing an international reference datum. Prior to this, the ellipsoids and datums were
established by long line precision surveying and astronomical observation. The processing of the
measurements of these surveys led to establishment of ellipsoids which were best fits to local
conditions and not the entire Earth and datums which were arbitrary to the surveyor’s network.
But because this surveying relied upon the use of bubble leveling for alignment of instruments
with the horizontal plane (the geoid) they were susceptible to perturbations of the gravity field
and thus only useful for local purposes.

Until recently, the reference system for North America has been the North American Datum of
1927 (NAD27), which used Clarke’s 1866 ellipsoid and had its origin at Meade’s Ranch in
Kansas. But because of technical geodetic surveying problems with NAD27 and an interest in
standardizing the reference system on an international basis, the North American Datum of 1983
reference system NADS83 has been chosen to replace NAD27. This system is based upon the
Geodetic Reference System of 1980 (GRS80) which is geocentric (origin is the center of the
Earth’s mass) and uses an ellipsoid approximating the entire Earth based on satellite
measurements.

The World Geodetic System 1984 (WGS84), the internationally recognized datum was originally
based on GRS80, but has had some minor refinements. For practical purposes WGS84 is the
same as NADS83 (down to 9 significant digits).

There are several methods for conversion of geographic data between datums, but the most
convenient and perhaps common are the Molodensky formula (using the “towgs84=""parameter)
and the NADCON (using the “nadgrids=" parameter) used for North American Datum
conversions. The Molodensky method is often used for international conversions and is
considered to have a conversion accuracy of 5-10m in United States regions. The NADCON
method uses of a grid of longitude-latitude corrections from which a correction value can be
interpolated for any non-nodal point. The correction grid is determined by minimum curvature
gridding of corrections for control points whose location had been accurately determined by both
NAD27 and NAD83 surveying methods. Error in conversion with NADCON is generally
considered to be less than a meter (0.15m for most of the conus (conterminous U.S.) region) but
may suffer in regions of poor control.

ProLat uses the NADCON method to provide conversion between NAD27 and NAD83. Table 1
is a summary of the NADCON grid regions. Conus is the default region for ProLat. To use the
other regions, see the function reference for applying the region parameter.

Table 1: NADCON correction regions

Extent

14

Region nadgrids= East West South North
Parameter

Conterminous U.S. conus.ncn 131° W 63° W 20° N 50° N
Alaska alaska.ncn 166° W 128° W 46° N 77° N
Hawaii hawaii.ncn 161°W 154° W 18° N 23°N
Puerto Rico and Virgin prvi.ncn 68° W 64° W 17° N 19°N
Islands

St. George Is., AK stgeorge.ncn 171° W 169° W 56°N 57°N
St. Lawrence Is., AK stlrnc.ncn 172° W 168° W 62° N 64° N
St. Paul Is., AK stpaul.ncn 171° W 169° W 57°N 58° N

Other Datum Conversion Methods

Some datums use a 3, 7, or 10 parameter equation to convert to the WGS84 datum. The

parameters are defined with “towgs84” (pronounced “To WGS84™) in a Proj.4 definition. See

more information about towgs84 in later chapters.

15

What is a Projection?

In ProLat, a projection defines how latitude longitudes are converted to an XY grid system,
usually in meters. There are so many projections because there is no perfect way of flattening an
elliptical earth onto a flat grid. Some projections are better for regions that extend primarily in
the North South direction such as Transverse Mercator. Other projections work better for
regions that extend primarily in the East West directions such as Lambert Conformal Conic.

There special projections that aren’t really projections such as Latitude Longitude where there is
no projection needed, and Geocentric, which is a 3 dimension XYZ projection.

A projection is most commonly thought of as an easting/northing xy mapping onto a flat surface.
It is much like peeling an orange in a way that makes it lie flat. An Xy projection is useful
because it allows distance calculations between points.

There are several common characteristics of Xy projections.
- There is not a single xy project that works perfectly for the whole world at once, for the
same reason an orange can’t be peeled into one piece that lies perfectly flat without gaps.
- A projection works well in a limited region. That is why there are so many projections.
- Some projections work well in vertical strips, or in horizontal strips, or in diagonal strips,
or at the poles. A cartographer chooses the best projection for the job.

ProLat provides support for a long list of projections. Some like the UTM, and State Plane
projections are easily accessed through standard functions. Others may be accessed through a
custom coordinate system. The mathematical details are not covered in this manual. The user
would need to get advanced information from other reference material.

16

The Universal Transverse Mercator (UTM) Coordinate System

UTM is popular for several reasons. It was adopted by the U.S. Army in 1947 for designating
rectangular coordinates on large scale maps. It uses relatively few parameters and covers the
whole Earth except the poles. However, its limitation is that each zone covers a narrow vertical
strip which may not be suitable for some applications.

Central meridian

60

A 4

LS
L\
) /4

UTM is the ellipsoidal Transverse Mercator with 60 predefined zones. Each zone is 6° wide. A
central meridian is defined as running down the center of each zone. There are also vertical
divisions roughly 8° high, but these are not used as parameters in the transformation. The zone
system provides a convenient grid system across the globe except for the poles.

e Its 60 zones are each 6° wide in longitude

e The longitude center of each zone is the central meridian

e The central meridian of each zone always has the x position of 500,000 meters

e X positions increase positively to the east

e Zones are numbered 1 to 60

e Zone | covers 180° to 174° W. The central meridian is at 177° W.

e Zone 60 is 174° to 180° E.

e UTM covers latitudes 84°N to 80°S. The corresponding projection for the polar regions
is the Universal Polar Stereographic (UPS).

e Vertical divisions are 8° high. Maps that use the UTM grid use letters for the vertical
zone. It is not necessary to specify the vertical zone for the transformation.

e For the northern hemisphere, Y starts at 0 meters at the equator

17

For the southern hemisphere, Y starts at 10,000,000 at the equator

e For both southern and northern hemispheres, Y increases positively to the north

Exceptions occur around Norway.

Exception Regions

Latl Lat2 | Lonl Lon2 | Zone
56 64 0 3 3IN
72 84 0 9 3IN
56 64 3 12 32N
72 84 9 21 33N
72 84 21 33 35N
72 84 33 42 37N

Modified UTM Zones - 31N thru 37N - Projection: Polar Sterographic

Distance measurements work within a zone, but not between zones. To use UTM conversions
with ProLat for .Net use the CoordSys.GetCS() function with the “UTM” group to create a
coordinate system definition. Use the GetCS() function to create another coordinate system to
convert to or from UTM. Then use the CoordSys.Transform() function.

Normally a zone is selected by the user. However, to calculate a UTM zone from a lat/lon
coordinate, the following pseudocode can be adapted to most languages.

// Calc UTM zone, with lon positive east.

zone = (int) ((180 + lon) / 6) + 1;

if (lat >= 56 && lat < 64 && lon >= 3 && lon < 12)
zone = 32;

else 1f (lat >= 72 && lat < 84) {
if (lon >= 0 && lon < 9)

zone = 31;

if (lon >= 9 && lon < 21)
zone = 33;

if (lon >= 21 && lon < 33)
zone = 35;

if (lon >= 33 && lon < 42)
zone = 37;

18

State Plane Coordinate System (SPCS)

To use State Plane Coordinate Systems with ProLat for .Net is as easy as using CoordSys.GetCS
with a group name of “US SPC83” or “US_SPC27” and selecting the right system. For
example, the following line selects

SP

The State Plane coordinate system was established by the U.S. Coast and Geodetic Survey in the
1930's. One to five zones (due to its size, Alaska has 10 zones) were set up in each state, using a
Lambert Conformal or a Transverse Mercator projection (depending on the dominant orientation
of the state, N-S or E-W). The Oblique Mercator projection is used for the Alaskan Panhandle
due to its more angular orientation.€€. The specific projection and the size of the zone was
selected to fit the geometry of the state, and to keep distortions at or below one part in 10,000.
The low distortion makes the SPCS useful at the state and county levels. Zone boundaries are
typically political boundaries such as county or city lines.

There are two sets of State Plane definitions. One based on the NAD27 datum and one based on
the NAD83 datum. There are also other differences between these two sets. ProLat provides
coordinate conversion for State Plane in NAD27 and NAD&3.

To use State Plane coordinates with ProLat for .Net, use the CoordSys.GetCS() function with the
group, “US_SPC27” or “US_SPC83”. Also define another coordinate system with GetCS().
Then, use CoordSys.Transform to convert between these systems. Use
CoordSys.GetSystem(“US_SPC83”) to get a list of zones within the group. See the function
reference and examples for details.

Example:

CH#:

try {
CoordSys LatLon = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

‘ Alabama western zone
CoordSys SPC = CoordSys.GetCS("uUs_spPc83", " AL83-w", "NAD83", "METERS");

// Place the longitude and Tatitude values in arrays

double[] Lon_x new double[] { -87.6 }; // Note west longitudes are negative
double[] Lat_y new double[] { 30.1 };

double[] Hgt_z new double[] { 0.0 };

coordsys.Transform(LatLon, SPC, Lon_x, Lat_y, Hgt_z, 1);
) // Display converted values ...
%atch(CCConfigException ex)

// Any configuration problems show up here with a message in e.Message
MessageBox.Show(ex.Message, “ProLat message”, MessageBoxButtons.OK, 0);

19

20

The Geocentric ECEF XYZ Coordinate System

Geocentric earth centered earth fixed coordinates are the raw coordinates used by GPS units.
They are 3-dimensional with the zero point of the xyz grid being at the center of the earth. The
units are in meters.

Many high-end GPS units store their coordinates as Geocentric to maintain the highest accuracy.

To use Geocentric coordinates, use the CoordSys.GetCS(“ECEF”, “ECEF”, “WGS84”,
“METERS”) to define a coordinate system definition. Also define another coordinate system
with GetCS(). Then, use CoordSys.Transform to convert between these systems. See the
function reference and examples for details.

Note that Geocentric ECEF XYZ coordinates should not be confused with geocentric latitude
longitude coordinates. Geocentric latitude longitude coordinates are rarely used and look similar
to standard lat / lon coordinates. However, the latitude angle is relative to the earth’s center
instead of being relative to the tangential plane of the earth’s surface at that location as is used
with normal latitude longitude coordinates.

Geocentric ECEF XYZ plot with z extending straight out of the page.

21

Redistributable Files

ProLat needs the files to be in the same directory where the file ProLatNet.dll or prolat.dll is
located. Alternatively, the function CoordSys.SearchPathAdd() or ProLatSetFilePath may be
used to define the directory where support files are located.

It is not necessary to keep all of the supporting files with the application if it is known they will
not be needed. Some are fairly large.

Here is a list of ProLat for .Net redistributable files:

ProLatNet.dll, prolat.dll

Geodesy*.txt

conus
ntvl_can.dat

alaska
hawaii
prvi
stgeorge
srirne
stpaul

xxharn.hrn

The main DLL library files. It should be located in the same directory as
the executable, or in a directory that is on the PATH environment variable.

The following files should be located in the same directory as
ProLatNet.dll, or use CoordSys.SearchPathAdd() to specity their location.

The files in this folder constitute the Geodesy database. They normally
should reside in a sub-folder named Geodesy in the folder with the
application.

NAD27 to NADS83 conversion for the Conterminous U.S.

NAD27 to NADS3 conversion for Canada. Note: the improved

ntv2 can.gsb is available for free end-user download from the NRCan
web site at http://www.geod.nrcan.gc.ca/index_e/products_e/software_e/ntv2_e.html

NAD27 to NADS83 conversion for Alaska.

NAD27 to NADS83 conversion for Hawaii.

NAD27 to NADS3 conversion for Puerto Rico and Virgin Islands.
NAD27 to NADS83 conversion for St. George Is. AK.

NAD27 to NADS3 conversion for St. Lawrence Is. AK.

NAD27 to NADS83 conversion for St. Paul Is. AK.

HARN/HPGN to NADS3 grid shift files for all NADCON regions.

22

.Net Reference

Programming in Windows .Net Environments
This section covers Visual Studio .Net programming for C#, VB .Net, and C++/CLL

Steps for Visual Studio and Windows 8

The Examples folder has examples for C#, VB, and C++ in Visual Studio 2010. ProLat also
works with Windows 8 and Visual Studio 2012.

For both VS2010 and VS2012, here are the steps to use ProLat for .Net:

1. Add areference to ProLatPortable.dll. This is done by right clicking on the Visual Studio
project and select Add Reference. Navigate to the ProLatPortable\bin\Release folder and
select ProLatPortable.dll.

2. At the top of a source code file add a line to import the namespace:

C#: add using ProLatNet;
VB: add Imports ProLatNet
C++: add using namespace ProLatNet;

Call the ProLat functions in the class CoordSys as shown in the examples. In most cases,
these two steps are all that is needed.

Windows Phone 7 and 8

ProLat for .Net is works seamlessly in Windows Phone 7 and 8. For Windows Phone 7, the
Phone 7 SDK is required from Microsoft. It provides a phone emulator.

A ProLat example for Windows Phone 7 is provide in Examples\ProLatWPA for VS2010.
For Windows Phone 8, it is necessary to use Windows 8 with Visual Studio 2012 Express for

Windows Phone 8 or a higher version of Visual Studio. The ProLatPortable.dll file works with
both Windows Phone 7 and 8.

23

.Net Reference

.Net Examples

Examples for C# .Net and VB .Net are included in the “examples” folder. These are created with
Visual Studio 2010. See below for basic examples.

Using ProLat for .Net functions

Here is an example that converts latitude / longitude coordinates to UTM coordinates.

CH#:

Using ProLatNet;

try {

// Get a coordinate system for standard Tatitude/longitudes
CoordSys LatLon = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");

// Get a coordinate system for UTM zone 17 North
COOI“dSyS UTM17 = Coor'dSyS.GetCS("UTM", "UTM-17N", "WGS84'", "METERS");

// Place the longitude and Tatitude values in arrays

double[] Lon_x
double[] Lat_y
double[] Hgt_z

new double[] { -82.0 }; // Note west longitudes are negative
new double[] { 36.0 };
new double[] { 0.0 };

// Peform the conversion. 1In this case there is only one point
coordsys.Transform(LatLon, UTM17, Lon_x, Lat_y, Hgt_z, 1);

// Display converted values ...

}
%atch(CCConfigException ex)

// Any configuration problems show up here with a message in e.Message
MessageBox.Show(ex.Message, “ProLat message”, MessageBoxButtons.OK, 0);

Let’s step through this example to see the essential parts. Most of the capabilities are provided

by the CoordSys class.

1. Use the CoordSys.GetCS() method to get a coordinate system for the source coordinates.
In this case it is latitude/longitude degrees. See the Groups and Systems sections below
to find the values to use.

2. This example converts to UTM so it also gets a coordinate system for UTM zone 17.

3. Next the source latitude and longitude is placed in arrays. ProLat for .Net requires arrays
because they are much more efficient when processing lots of data. So we start out that
way from the first examples.

4. Finally, CoordSys.Transform converts the coordinates. Transform will convert between
any defined coordinate systems. To convert the other direction, just swap the first two
parameters. The conversion is in-place within the arrays because when processing large
arrays it is more efficient.

5. Error handling is provided with the catch mechanism. All ProLat errors will use

CSConfigException to report a message. An application also can check
CoordSys.GetErrNo() to get a numerical code for the last error, although the message is

24

.Net Reference

more descriptive. Sometimes a conversion may fail without throwing an exception, in
which case the converted values will be very large to indicate the problem.

Alternately Proj.4 definitions may be used as in the following example.

C#:

// Get a coordinate system for Tatitude/Tongitudes using a Proj.4 definition
coordSys LatLon = Coordsys.GetCS("+proj=longlat +datum=wGS84");

// Get a coordinate system for UTM zone 17 North using a Proj.4 definition
coordsys UTM17 = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84");

VB:
Dim LatLon As CoordSys = CoordSys.GetCS("+proj=longlat +datum=wGsS84")
Dim UTM17 As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84")

CH++:
CoordSysA LatLong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
COOI"dSyS/\ UTM17 = COOFdSyS::GetCS("UTM", "UTM-17N", "wGS84", "METERS");

.Net Class and Function Reference

The following classes are provided in ProLat for .Net:

- CoordSys: This is the primary class that offers coordinate conversion and projection
capabilities.
- DMS: This class provides parsing of common text coordinate formats. For

example it can convert W 92°3021.5" N 43°30'21.5" into decimal
format of -92.5059722 43.5059722, etc.

Class CoordSys

See the Examples section near the beginning of this manual for a quick view of how the
CoordSys class is used to perform coordinate conversion.

There is no CoordSys constructor. Instead, use CoordSys.GetCS to get an instance of a
CoordSys object that represents a fully qualified coordinate system.

The following methods are called statically on the class (not on an instance):

GetCS() - Creates a coordinate system definition returned as an instance of CoordSys.
Transform() - The main function to convert coordinate points.

GetGroups() - Returns a list of groups in the Geodesy coordinate systems database.
GetSystems() - Returns a list of systems in a selected group.

GetDatums() - Returns a list of available datums in the Geodesy database.

25

.Net Reference

GetUnits() - Returns a list of available units in the Geodesy coordinate systems database.
GetProjNames() - Returns a list of projections available for Proj.4 compatible definitions.
GetProjDescriptions() - Returns a list of descriptions of projections.

GetProjParameters() - Returns an abbreviated list of parameters needed by projections.

AddFileLocationAssembly() - Informs ProLat to look in a new assembly for supporting files.
AddFileLocationFolder() - Adds a directory where support files are located.

EllipsoidForward() - Calculate the location when given the distance and direction.
EllipsoidInverse() - Calculate the shortest distance and direction between two locations.
GetErrNo() - Get’s an error code.

The following items are available with an instance of CoordSys:
ScaleConvergence() - Find the scale error and direction to the real location for a projection.
The following member variables are available to provide the numerical values of a projection’s

parameters. These values are undocumented, but made available. Use these with care because
each projection sets the variables differently.

a - Ellipsoid semi-major axis in meters
b - Ellipsoid semi-minor axis in meters
rf - Ellipsoid reciprocal flattening

k0 - Scale factor

lon 0 - Central meridian

lat 0 - Central parallel

x 0 - False easting

y 0 - False northing

to_meter - Unit scaling

Class DMS - Text Coordinate Parsing Class

GetDMS() - Extract coordinate pairs from a string into arrays
GetDMSSingle() - Get a single component such as latitude only or longitude only.
GetLat() - Get a single latitude value.

GetLon() - Get a single longitude value.

Testing and Verification

Testing is very important for coordinate conversion applications!

Coordinate translations require a high degree of care to verify that the results are as intended.
There are many different parameters which increase the chances of a one parameter being

26

.Net Reference

configured wrong. Effective Objects highly recommends using a verification procedure at the
design time of your program and each time you use a different set of configuration parameters.

A verification procedure is straightforward. Find two or more known geographic coordinates
with their translated values. These are known as control points. Run these coordinates through
the software to make sure they transform properly to the known values.

CoordSys Method Reference

GetCS

Net
static CoordSys GetCS (string Group, string System, string Datum, string Units)
static CoordSys GetCS (string ProjDef)

Creates a coordinate system object that may be used with Transform to convert coordinates.

Input Parameters:
- Group The name of a Geodesy group. (Use GetGroups() to get a list of groups.)
- System The name of a system within the group. (Use GetSystems() to get a list.)
- Datum The name of a datum. (Use GetDatums() to get a list.)

- Units The name of the units for this coordinate system. (Use GetUnits() to get a
list.)

- ProjDef A Proj.4 compatible definition string. This supports all Proj.4 parameters
except +init. See the appendix for more information about these
parameters.

Outputs:
Returns an instance of CoordSys which can be used with the Transform method.

Errors:
Throws an exception named CSConfigException if an error is detected. Use the
exception message for more information. Note that some errors such as typos in values
are not detected, so it is important to check a few known reference points.

GetCS creates a coordinate system object of type CoordSys. It attempts to check parameters and
the existence of the proper supporting files such as grid shift files. The resulting instance can be
passed to Transform to convert coordinates to a different coordinate system.

Examples with Geodesy definitions:

C#:
Coordsys Tlatlong = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”);
COOI“dSyS utml? = Coor‘dSyS.GetCS("UTM", "UTM-17N", "wGS84", "METERS”);

27

.Net Reference

VB.Net:
Dim latlong as CoordSys = CoordsSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)
Dim utml?7 as CoordSys = CoordSys.Getcs("uTM", "UTM-17N", "wGS84", "METERS”)

C++/CLI:
coordsysA latlong = CoordSys::GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
coordSysA utml?7 = CoordSys::GetCS("uT™M", "UTM-17N", "WGS84", "METERS");

Examples with Proj.4 definitions:

C#:
coordsys utml7 = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”);

VB:
Dim utml?7 As CoordSys = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”)

C++/CLI:
coordSysA utml7 = CoordSys::GetCS("+proj=utm +zone=17 +datum=wGS84”);

28

.Net Reference

Transform

.Net

Static void Transform (CoordSys Source, CoordSys Destination,
double[] LonX, double[] LatY, double[] HgtZ,
int PointCount)

Win32/64

int ProLatTransform (int FromHandle, int ToHandle,
double *LonX, double *LatY , double *HgtZ,
int iCount)

Transforms coordinates between coordinate systems.

Inputs:

Source: A CoordSys instance returned from GetCS. It represents the source coordinate
system

Destination: A CoordSys instance returned from GetCS. It represents the destination
coordinate system.

LonX: A managed double array that acts as an input and an output. The conversion is
done in-place and LonX will return with the results. Note that West directions should
have a negative value.

LatY: A managed double array that acts as an input and an output. The conversion is
done in-place and LatY will return with the results. Note that South directions should
have a negative value.

HgtZ: A managed double array that acts as an input and an output. The conversion is
done in-place and HgtZ will return with the results. If no Z height values are present in
the source coordinates, the HgtZ array should be filled with zeros.

PointCount : The number of coordinate points to convert.

Note that if a conversion is not successful, Transform may throw an exception for critical errors
or may return a huge value for non-critical errors. Error values will be greater than 1e100. Use
GetErrNo() to check for an error code.

There are several possible reasons for an error. Double check the parameters for the coordinate
systems. The two most likely problems encountered are: 1. Coordinates out of range for valid
conversion with the defined parameters; and 2. ProLat was unable to find supporting files needed
to shift datums, etc. Also, note that ProLat functions are not able to check for all valid
parameters because of the unlimited possible combinations.

It is highly recommended to test conversion parameters using control points. This involves
getting several coordinate points with their known converted values. Test using these control
points with ProLat functions to verify the desired conversion is produced.

29

.Net Reference

.Net Examples:

VB:

Try
Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)
Dim utml?7 as CoordSys = CoordSys.GetCS("uTM", "UTM-17N", "wGS84'", "METERS”)

Dim LonX(1), LatY(1l), z(1) As Double
LonX(0) = -82.0

Laty(0) = 43.1

z(0) = 0.0

coordsys.Transform(latlong, utml7, LonX, Laty, z, 1)

Display values here
Catch ex As csconfigException

gsgBox(ex.Message, MsgBoxStyle.okonly, “ProLat Message”)
End Try

Ci#:

Try

{
coordsys 11 = Coordsys. GetCS("prOJ Tonglat datum=wGS84");
coordsys utml0 = CoordSys.GetCS("proj=utm zone=10 datum= WG584”),

double[] x = { -122.0 }; // Downtown Seattle
double[] v = { 47.0 };
double[] z = { 0 };

coordsys.Transform(11, utmlO, x, y, z, 1);
}
%atch (csconfigException e)
MessageBox.Show(e.Message, "ProLat message™);
C++/CLI:
try
{
coordSysA A
coordsysA B

COOFdSyS::GetCS("LAT_LONG", "LAT-LONG", "WGS84'", "METERS");
coordsys::Getcs("utM", "UTM-17N", "wGS84", "METERS");

array<double>A lon_x = gcnew array<double>(1);
array<double>A Tat_y = gcnew array<double>(1);
array<double>A z = gcnew array<double>(1);

Ton_x[0] = -82.5;
Tat_y[0] = 43.0;
z[0] =0

) coordsys::Transform(A, B, lon_x, Tlat_y, z, 1);
%atch(CSConfigExceptionA e)

MessageBox: :Show(e->Message, '"ProLat message");

Win32 Examples:
See the examples folder for complete examples.

VB6 / Excel / Access:
iReturn = ProLatTransform(hFrom, hTo, dfx(0), dfy(0), dfz(0), iDetected)

C++:
iReturn = ProLatTransform(hFrom, hTo, X, Y, Z, iDetected);

Android Examples:
See the examples folder for complete examples.

csA.transform(csB, 2,

30

.Net Reference

C++:
iReturn = ProLatTransform(hFrom, hTo, X, Y, Z, iDetected);

31

.Net Reference

CoordSys.AddFileLocationAssembly

Net
void CoordSys.AddFileLocationAssembly (Assembly assembly)

Adds an assembly reference so that ProLat can look for supporting files such as grid shift files
and custom definitions.

ProLat includes coordinate definitions and datum grid files within its assembly. If the
application needs files that are not already there (like NTV2 0.GSB, which is fairly large) the
application will need to include the file in its own assembly and then tell ProLat to look in the
assembly with this function.

Here are the steps for adding a file to a project and then telling ProLat about the project
assembly.

a. Right-click the project and select Add -> New folder. Name the new folder
“Geodesy” or “ProLatFiles”. The folder name does not matter because ProLat will
search all the files within an assembly to find the one it needs.

b. Right-click the folder that was just added and select Add -> Existing item...
Navigate to the file needed and select the file(s) to add. (It is possible to highlight the
first file and then Shift-click on the last file to select them all.)

c. In the Visual Studio folder where the files were just added, select all of the files. In
the properties window at the bottom right, there is a property named, “Build Action”.
Change the Build Action to “Embedded Resource”. If this is not done, the file will
not be available.

d. In the application start-up code, call coordsys.AddFileLocationAssembly(
Assembly.GetExecutingAssembly())

Example:

VB:
Imports System.Reflection (put at top of file)

Coordsys.AddFileLocationAssembly(Assembly.GetExecutingAssembly())

Ci#:
using System.Reflection; (put at top of file)

coordsys.AddFileLocationAssembly(Assembly.GetExecutingAssembly());

C++/CLI:

coordsys: :AddFileLocationAssembly (Assembly.GetExecutingAssembly());

32

.Net Reference

CoordSys.AddFileLocationFolder

void CoordSys.AddFileLocationFolder (String folder)

Adds a folder for ProLat to look for supporting files such as grid shift files. Call this function
once when your app starts. It is a static class function so one call applies to all instances of
CoordSys. Several folders can be added. Avoid adding the same folder more than once.

Not available with Windows Phone. Use AddFileLocationAssembly() instead.

Example:
VB:

Coordsys.AddFileLocationFolder("C:\geodesy")
C#:

Coordsys.AddFileLocationFolder("C:\geodesy");

C++/CLI:

coordsys: :AddFileLocationFolder("C:\geodesy");

33

.Net Reference

CoordSys.GetErrNo

int CoordSys.GetErrNo()

Returns an error code. 0 indicates no error, and a non-zero error indicates an error was detected.
Most ProLat functions will throw a CSConfigException if a serious error is detected. Check the

exception message to get more details.

In some cases Transform() can have error that do not throw an exception. It is possible to use
GetErrNo() to check for detected errors after calling Transform(). In this case the converted
coordinates that caused an error will be set to a huge value. For some errors, Transform will

continue processing the whole array.

When a non-zero error is detected, check the returned data values from the previous call to a
ProLat function. Sometimes a conversion may detect an error and set the value to a very large

number (greater than 1E100).

Possible error codes:
-14 Latitude or longitude exceeded limits
-15 Invalidxory

Example:

VB:

coordsys.Transform(latlong, utm, x, y, z, 1000)
If Coordsys.GetErrNo() <> 0 Then

' Ccheck for high values
End If

C#:

Coordsys.Transform(latlong, utm, x, y, z, 1000);
if (Coordsys.GetErrNo() != 0)

{
) // Check for high values

34

.Net Reference

CoordSys.GetGroups and related functions

List<string> CoordSys.GetGroups()
List<string> CoordSys.GetGroups(List<string> Descriptions)
List<string> CoordSys.GetGroups(List<string> Descriptions, List<string> SuggestedDatum)

List<string> CoordSys.GetSystems(string Group)
List<string> CoordSys.GetSystems(string Group, List<string> Descriptions)

List<string> CoordSys.GetDatums()
List<string> CoordSys.GetDatums (List<string> Descriptions)

List<string> CoordSys.GetUnits()
List<string> CoordSys.GetUnits (List<string> Descriptions)

These functions return the lists of available groups, systems, datums, and units available for use
with the function CoordSys.GetCS(group, system, datum, units).

For examples, see the ProLat Examples folder and look for the ProLatCalc examples.

CoordSys.GetProjNames and related functions

List<string> CoordSys.GetProjNames|()
List<string> CoordSys.GetProjNames (List<string> Descriptions)
List<string> CoordSys.GetProjNames (List<string> Descriptions, List<string> Params)

These functions return the lists of available projections for use with the function
CoordSys.GetCS(string definitionProj4). The returned names may be used with the “+proj="
parameter. The param strings are fairly cryptic at the moment. “Sphere” indicates it can take
just a radius parameter, and “Ellips” indicates it needs the semi-major axis, “+a=", and the
reciprocal flattening, “+rf”. See the list of projections and parameters at the end of this manual
for more details.

For Win32

The following functions get lists of available geodesy items.

int ProLatGetGroups(char *Groups, char *Descs, char *Datums);

int ProLatGetSystems(const char *Group, char *Systems, char *Descs, char *Datums, char *Units)
int ProLatGetDatums(char *Datums, char *Descs, char *Methods, char *Ellipsoids)

int ProLatGetUnits(char *Units, char *Descs, char *Suffixes, char *FmMeters, char *ToMeters);

These functions fill the strings with a list of available items separated by a | character. Use a

split function to separate them into individual items. The strings should be pre-allocated with at
least 10,000 characters of space. See the ProLat Calculator example.

35

.Net Reference

Ellipsoidinverse

static void Ellipsoidinverse (CoordSys CS, double[] LatFrom, double[] LonFrom,
double[] LatTo, double[] LonTo, double[] Geodesic,
double[] AzForward, double[] AzBack, int PointCount)

static void Ellipsoidinverse2 (double a, double rf, double[] LatFrom, double[] LonFrom,
double[] LatTo, double[] LonTo, double[] Geodesic,
double[] AzForward, double[] AzBack, int PointCount)

Calculates the geodesic (shortest distance), the Forward Azimuth (angle from North), and the
Back Azimuth accurate to the ellipsoid.

Inputs:

CS: A CoordSys instance returned from GetCS. It represents the coordinate system with an
Xy projection.

LatFrom: A managed array of double float values with the starting latitude values.
LonFrom: A managed array of double float values with the starting longitude values.
LatTo: A managed array of double float values with the destination latitude values.
LonTo: A managed array of double float values with the destination longitude values.

a: The ellipsoid semi-major axis. This alternate form allows calculations without needing a
full coordinate system definition.

rf: The ellipsoid reciprocal flattening.
PointCount : The number of coordinate points to convert.
Outputs:
Geodesic: A managed array of double to receive the results of the geodesic calculation.
AzForward: A managed array of double float to receive the forward azimuth values.

AzBack: A managed array of double float to receive the back azimuth values.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

36

.Net Reference

Example:

C#:
Coordsys
doublel[]
doublel[]
double[]
doublel[]
double[]
doublel[]
double[]
Ccoordsys.

utml?7 = CoordSys.GetCS("+proj=utm +zone=17 +datum=wGS84”);

LonFrom { -93 };

LatFrom { 37 };

LonTo = { -93.1 };

LatTo = { 37.1 };

Geodesic = new double[1l];

AzForward = new double[1l];

AzBack = new double[1];

ETllipsoidinverse(utml?7, LonFrom, LatFrom, LonTo, LatTo,
Geodesic, AzForward, AzBack, 1);

37

.Net Reference

EllipsoidForward

static void EllipsoidForward (CoordSys CS, double[] LatFrom, double[] LonFrom,
double[] Geodesic, double[] Azimuth,
double[] LatTo, double[] LonTo, int PointCount)

static void EllipsoidForward2 (double a, double rf, double[] LatFrom, double[] LonFrom,
double[] Geodesic, double[] Azimuth,
double[] LatTo, double[] LonTo, int PointCount)

Calculates a point from a starting point with geodesic distance, and azimuth (angle from North),
accurate to the ellipsoid.

Inputs:

CS: A CoordSys instance returned from GetCS. It represents the coordinate system with an
Xy projection.

LatFrom: A managed array of double float values with the starting latitude values.
LonFrom: A managed array of double float values with the starting longitude values.
Geodesic: A managed array of double with the geodesic distance.

Azimuth: A managed array of double float with the angle in degrees from North.

a: The ellipsoid semi-major axis. This alternate form allows calculations without needing a
full coordinate system definition.

rf: The ellipsoid reciprocal flattening.
PointCount : The number of coordinate points to convert.
Outputs:
LatTo: A managed array of double float values with the destination latitude values.

LonTo: A managed array of double float values with the destination longitude values.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

Example:

C#:

coordsSys utml7 = CoordSys.GetCS("+proj=utm +zone=17 +datum=WGS84”);

double[] LonFrom .0 };

double[] LatFrom { 37.0 };

double[] Geodesic = { 20000.0 };

double[] Azimuth = { 47.0 };

double[] LonTo = new double[1l];

double[] LatTo = new double[1l];

Coordsys.E1lipsoidForward(utml?7, LonFrom, LatFrom, Geodesic, Azimuth,
LonTo, LatTo, 1);

38

.Net Reference

ScaleConvergence

void ScaleConvergence (double[] X, double[] Y,
double[] Scale, double[] Convergence, int PointCount)

Calculates the scale factor and convergence angle for the given XY points of a projection against
the ideal scale and true north. ScaleConvergence() is a method of an instance of CoordSys.

Input:
X: A managed array of double float values with the X (Easting) values.
Y: A managed array of double float values with the Y (Northing) values.

Output:

Scale: A managed array of double float to receive the results of the scale factor
calculation.

Convergence: A managed array of double float to receive the convergence angle in
radians.

PointCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid.

Example:

VB:

Try
Dim latlong as CoordSys = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "WGS84", "METERS”)

Dim utml?7 as CoordSys = CoordSys.GetCS("uTM", "UTM-17N", "wGS84'", "METERS”)

Dim LonX(1), LatY(1l), z(1) As Double
LonX(0) = -82.0

Laty(0) = 43.1

z(0) = 0.0

coordsys.Transform(latlong, utml7, LonX, Laty, z, 1)

' Get the scale and convergence for this conversion

Dim Scale(l), Convergence(l) As Double

utml?7.scaleConvergence(LonX, LatY, Scale, Convergence, 1)
Catch ex As csconfigException

MsgBox (ex.Message, MsgBoxStyle.okonly, “ProLat Message”)
End Try

39

.Net Reference

GetDMS

static int GetDMS (string sData, int Order,
out double[] v1, out double[] v2, out double[] v3,
out string ErrMsg)

GetDMS converts text coordinates to double floating point values suitable for coordinate
conversion. It reads most common latitude longitude and decimal formats. See the syntax details
below for complete details.

A few common formats are:
102d49'12.81"W 35d15'38.36”N 100.72 (100.72 is an optional height or altitude)
W102°49'12.81” N35°15'38.36” 100.72
W 102 49.2135 N 35 15.63933 100.72
102.820225 W 35.2606556 N 100.72

Input:

sData: The string containing text coordinates. A string may contain more than one coordinate
separated by newline characters. The results are placed in the v1, v2, v3 arrays.

Order: Determines how latitude longitude values are place in arrays v1 or v2.

0: No latitude longitude detection. The first coordinate value is placed in v1, the
second in v2, and the third in v3.
1: Place longitude values in v1, latitude in v2, and altitude in v3. Uses heading

letters ‘E” and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: N10.5 W30.5 would get vI=30.5 v2=10.5 v3=0.0.

2: Place latitude values in v1, longitude in v2, and altitude in v3. Uses heading
letters ‘E’ and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: W30.5 N10.5 would get v1=10.5 v2=30.5 v3=0.0.

Note: Coordinates that have no heading letter will always be placed in v1 and v2 in the order
they are detected. It is up to the calling code to determine their order, usually by some
user selectable option.

Output:

v1, v2, v3: Managed arrays of double floating point. The coordinates found in the sData string
will be placed into these arrays. The Order parameter determines if ProLatGetDMS
detects latitude verses longitude values and in which array they land. The array v3
receives the optional altitude.

ErrMsg: A string that will receive an error message if an error is encountered. This may be
NULL to avoid returning an error string..

40

.Net Reference

Returns a count of errors detected. If the count is greater than 0, check the ErrMsg for additional
information. Common errors are related to unrecognized elements in a string.

Syntax:

ProLatGetDMS uses pattern recognition to flexibly detect many different coordinate formats.
Here is the general syntax specification:

sData contains a list of one or more text coordinates separated by carriage returns or line feeds.
The string may contain the following elements:

Comments: Comments are allowed with the following notation:
// Comment to end of line
Comment to end of line
% Comment to end of line
/¥ F Comment between /* and */

Ignored characters:
space, tab, comma, semicolon, colon, parenthesis, square brackets,
and space followed by minus and another space * - ¢

Coordinates:
A coordinate has the following format:

DMS DMS [optional altitude]

DMS is a flexible format for degrees minutes seconds and heading. Both DMS values in a
coordinate need to have the same format. Possible formats include:

Degrees Minutes Seconds Heading Degrees Minutes Seconds Heading [altitude]
Degrees Minutes Heading Degrees Minutes Heading [altitude]
Degrees Heading Degrees Heading [altitude]
Heading Degrees Minutes Seconds Heading Degrees Minutes Seconds [altitude]
Heading Degrees Minutes Heading Degrees Minutes [altitude]
Heading Degrees Heading Degrees [altitude]
Decimal Decimal [altitude]

Degrees unsigned decimal value followed by a space, d, D, or °
Minutes unsigned decimal value followed by a space, or'
Seconds unsigned decimal value followed by a space, or "
Heading the letters E, e, W, w, N, n, S, or s
The letters W, w, S, and s will create a negative value.
Minus signs are ignored for Degrees Minutes and Seconds.
Decimal signed decimal value with no heading letter

Note that commas are used as separators only. They may not be used as a decimal mark or
thousands marker.

41

.Net Reference

Syntax Examples:

80d25°49.12”W 35d41°29”N
802549.12E 3541298
35°41°29”N 80°25°49.12”W 100.7
W80d25°49.12” N35d41°29”
80°25.81867°W 35°41.48333°N
3541.48333 S 8025.81867 E
W80d25.81867 N35d41.48333
W80 25.81867 N3541.48333
80.4303111dW 35.6913889dN
80.4303111 W 35.6913889 N

S 35.691389° E 80.4303111°
W80.4303111 N35.691389

-80.4303111 35.691389
500145.387 2457353.25

Example:

VB:

Dim Lon(), Lat(), Z() As Double

// USGS common
// Degrees Minutes Seconds

// With altitude

// Degrees Minutes

// Garmin common

// Degrees

// Decimal

// Decimal UTM easting, northing

Dim sData As String = "80 25 49.12 W 35 41 29 N" & vbCr & vbLf & _

"12 25 49.12 E

Dim msg As String

15 41 29 S 225.4"

Dim ErrorCount = DMS.GetDMS(sData, 1, Lon, Lat, Z, msg)

Dim Output As String = "GetDMS returned:" & vbCr & vbLf

If (ErrorCount > @) Then

Output = Output & "Errors detected: "

End If

If (msg.Length > @) Then

& ErrorCount.ToString() & vbCr & vbLf

Output = Output & "Return message: " & msg & vbCr & vbLf

End If

For i =0 To 1

Output = Output & Lon(i).ToString() & "

Next

MsgBox (Output)

" & Lat(i).ToString() & vbCr & vbLf

42

.Net Reference

GetDMSSingle

int GetDMSSingle (string sData, out double[] v, out int[] heading, out string ErrMsg)
ProLatGetDMSSingle converts a single value instead of a full coordinate pair.

A few common formats are:
102d49'12.81"W
W 102 49 12.81
117 23.714 E
35.2606556 N

Returns 0 for success or a count of errors detected. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

sData: A managed string containing text single values. A string may contain more than one
value separated by newline characters. The results are placed in the v output array.

v: A managed array of double floating point. The value found in the sData string will be placed
into this array.

heading: A managed array of 4-byte integers. Indicates the heading value detected: 0 no
heading detected, 1 North, 2 South, 3 East, 4 West. Note that when South and West

headings are detected the value in v is negative.

ErrMsg: A managed string that will receive an error message if an error is encountered.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

43

.Net Reference

GetLat

double GetLat (string sPoint)
This function converts a text latitude to a double floating point value.
Throws CSConfigException for a syntax error, out of range, or an invalid heading.

sPoint. A managed string with a latitude value, which may be a DMS formatted value such as N
473511.35.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

GetLon

double GetLon (string sPoint)
This function converts a text longitude to a double floating point value.
Throws CSConfigException for a syntax error, out of range, or an invalid heading.

sPoint: A managed string with a longitude value, which may be a DMS formatted value such as
W 473511.35.

See the syntax description of GetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

44

.Net Reference

MGRS Military Grid Reference System Functions

string MGRS.ConvertFromGeodetic (double Longitude, double Latitude, int Precision = 5)
string MGRS.ConvertFromUPS (char Hemisphere, double Easting, double Northing,

int Precision = 5)
string MGRS.ConvertFromUTM (int Zone, char Hemisphere,

double Easting, double Northing, int Precision = 5)
void MGRS.ConvertToGeodetic (int InMGRS, out double Longitude, out double Latitude)
void MGRS.ConvertToUPS (int InMGRS, out int Zone, out char hemisphere,

out double Longitude, out double Latitude)
void MGRS.ConvertToUTM (int InMGRS, out int Zone, out char hemisphere,

out double Longitude, out double Latitude)

The MGRS support in ProLat for .Net is derived from GeoTrans and has equivalent
functionality. To use these functions, an MGRS object needs to be created to specify the
ellipsoid.

Ct: MGRS mgrs = new MGRS(); // Uses default wGS84 ellipsoid.
// For NAD27 ellipsoid use: new MGRS("datum=NAD27")
string outMGRS = mgrs.ConvertFromGeodetic(lon, lat);

VB.Net: Dim Mgrsl As MGRS = New MGRS() ' Uses default WGS84 ellipsoid.

' For NAD27 ellipsoid use: New MGRS("datum=NAD27")
Dim OutMGRS As String = Mgrsl.ConvertFromGeodetic(Lon, Lat)

These functions throw CSConfigException when an error is detected.

Outputs: The functions ConvertFromGeodetic, ConvertFromUPS, and ConvertFromUTM return an
MGRS string. The ConvertToXX functions return data in the parameters as described below.

Paramaters:
Longitude: A double value. West longitudes are negative.
Latitude: A double value. South latitudes are negative.

Precision: An optional parameter to indicate the number of digits. This defaults to the
standard of 5 digits precision.

Zone: An integer specifying the UTM zone. For ConvertToUPS and ConvertToUTM the
zone will return 0 for UPS and 1-60 for UTM.

Hemisphere: A char. ‘N’ for Northern hemisphere, and ‘S’ for Southern hemisphere.
Easting: A double value.

Northing: A double value.

InMGRS: A string containing an MGRS value.

45

.Net Reference

For performance it is helpful to group coordinates into like zones because internally it will
recreate coordinate systems when the zone changes.

ConvertToUTM will succeed even if the MGRS string is a UPS region. In this case it returns
UPS values with the zone set to 0. In the same way, ConvertToUPS can return a UTM value
with the zone set from 1 to 60. In these cases the MGRS.warningMessage will contain a
warning when the function returns.

Examples:

C#:
try

MGRS mgrs = new MGRS(); // Uses default wGS84 ellipsoid.
// For NAD27 ellipsoid use: new MGRS("datum=NAD27")

string outMGRS = mgrs.ConvertFromGeodetic(lon, lat);
mgrs.ConvertToGeodetic(outMGRS, out lon, out lat);

¥
catch(CSConfigException ex)

{
}

MessageBox.Show(ex.Message);

VB.Net:

Try
Dim Mgrsl As MGRS = New MGRS() ' Uses default WGS84 ellipsoid.
' For NAD27 ellipsoid use: New MGRS("datum=NAD27")

Dim Lon As Double = 5
Dim Lat As Double = 57
Dim OutMGRS As String = Mgrsl.ConvertFromGeodetic(Lon, Lat)
MessageBox.Show("MGRS example: 1lon/lat: " & _
Lon.ToString() & " " & Lat.ToString() & vbCrLf & _
"MGRS: " + OutMGRS)
Catch ex As CSConfigException
MessageBox.Show(ex.Message)
End Try

46

Win32/64 Reference

Programming in Windows 32/64 Native Environments

This section covers programming in VB6 which includes VBA for Excel and Access. It also
covers C++ and other languages compiled into native Windows 32/64 bit environments.

Setup Instructions

1. Make sure prolat.dll is located in the same folder as the executable or is located on the
system Path.

2. Add the installation directory to the PATH environment variable. In Windows use Start
> Control Panel > System > Advanced > Environment Variables. Edit the PATH
variable to add “;C:\ProLat\Win32”, or the path where ProLat was uncompressed. Note
that prolat.dll does not need to be registered because it is a standard Windows DLL like
kernel32.dll, not a COM DLL. It just needs to be on the path to be found by Windows.

3. When redistributing ProLat DLL files, it is usually necessary to copy the files to the same
directory as the .EXE file. Windows will look in the .EXE’s directory for DLL files
before it looks on the path. This simplifies installing the application that use ProLat.

Steps for using ProLat in VB6, Excel, Word, and Access

1. Add the file, prolatdll.bas, into your project. In Excel it is necessary to create a new
module and copy/paste the contents of prolatdll.bas.

2. See the examples for details or perhaps copy an example to get started.

3. Make sure the file, prolat.dll, is on the path as described above.

Steps for using ProLat in C++
1. Insert the line:

#include "..\..\prolatdll.h"

2. Make sure the file, prolat.dll, is on the path as described above.
3. See the examples for details.

47

Win32/64 Reference

Function Reference

ProLatDefineGeodesy and ProLatDefineDef

int ProLatDefineGeodesy (const char *group, const char *system, const char *datum,
const char *unit)

int ProLatDefineDef (const char * projdef)

Creates a coordinate system object that may be used with ProLatTransform to convert
coordinates.

Input Parameters:

- group The name of a Geodesy group. (Use ProLatGetGroups() to get a list of
groups.)
- system The name of a system within the group. (Use GetSystems() to get a list.)

- datum The name of a datum. (Use GetDatums() to get a list.)
- units The name of the units for this coordinate system. (Use GetUnits() to get a
list.)

- projdef A Proj.4 compatible definition string. This supports all Proj.4 parameters
except +init. See the appendix for more information about these
parameters.

Outputs:
Returns an integer handle to a coordinate system that can be used with
ProLatTransform().

Errors:
Throws an exception named CSConfigException if an error is detected. Use the
exception message for more information. Note that some errors such as typos in values
are not detected, so it is important to check a few known reference points.

Returns a 4-byte handle to be used with other ProLat DLL functions. The handle must be closed
with ProLatClose() when no longer needed. A zero is returned for an error. Use ProLatErrNo()

and ProLatGetStrErr() for error checking.

Examples with Geodesy definitions:

C++:

int Tatlong = ProLatGetGeodesy("LAT_LONG", "LAT-LONG", "WGS84", "METERS");
int utml? = ProLatGetGeodesy ("UTM", "UTM-17N", "WGS84", "METERS”);

VBA and VB6:

Dim latlong As Integer, utml7 as Integer
latlong = ProLatGetGeodesy("LAT_LONG", "LAT-LONG", "wGS84", "METERS")
utml7 = ProLatGetGeodesy ("UTM", "UTM-17N", "WGS84", "METERS')

48

Win32/64 Reference

Examples with Proj.4 definitions:

C++:
int utml7 = ProLatGetDef("proj=utm zone=17 datum=wGS84");

VBA and VBG6:
Dim utml7 as Integer

Tatlong = ProLatGetDef ("LAT_LONG", "LAT-LONG", "WGS84", "METERS")
utml? = ProLatGetDef("utT™M", "UTM-17N", "wWGS84", "METERS")

More examples:

UTM: utml? = ProLatGetGeodesy("UTM", "UTM-17N", "WGS84", "METERS")
ECEF (Earth Centered Earth Fixed) Geocentric XYZ:
ecef = ProLatGetGeodesy("ECEF", "ECEF", "wGS84", "METERS")

State Plane Coordinate System:
utml? = ProLatGetGeodesy('"US_SPC83", "CA83-4", "NAD83", "METERS'")

49

Win32/64 Reference

ProLatTransform

int ProLatTransform (int FromHandle, int ToHandle,
double *dfX, double *dfY, double *dfZ, int iCount)

Transforms coordinates between coordinate systems.
Returns 0 for success and non-zero for an error condition.

FromHandle: The handle returned from a ProLatDefine function. It represents the source
coordinate system

ToHandle: The handle returned from ProLatDefine function. It represents the destination
coordinate system.

*dfX: A pointer to an array of double float values with the source X values or a longitude values.
The conversion result is done in-place and *dfX will return with the results.

*dfY: A pointer to an array of double float values with the source Y values or a latitude values.
The conversion result is done in-place and *dfY will return with the results.

*dfZ: A pointer to an array of double float values with the source Z values. The conversion
result is done in-place and *dfZ will return with the results. If no Z height values are present in
the source coordinates, the Z array should be filled with zeros.

iCount : The number of coordinate points to convert.

Note that if a conversion is not successful, ProLatTransform may return a non-zero error. Or, it
may return 0 for success but the destination variables hold a very large value. For C/C++ the
error value is the standard HUGE VAL. For Visual Basic, the value will be greater than 1el2 (a
one with 12 zeros after it.)

There are several possible reasons for an error. Double check the parameters for the coordinate
systems. The two most likely problems encountered are: 1. Coordinates out of range for valid
conversion with the defined parameters; and 2. ProLat was unable to find supporting files needed
to shift datums, etc. Also, note that ProLat DLL functions are not able to check for valid
parameters because of the unlimited possible combinations.

It is highly recommended to test conversion parameters using control points. This involves
getting several coordinate points with their known converted values. Test using these control
points with ProLat functions to verify the desired conversion is produced.

50

Win32/64 Reference

ProLatClose

void ProLatClose(int Handle)

Closes the data structure and frees any allocated memory. It is important to call this function to
provide proper cleanup and release memory that was used for the coordinate definition.

ProLatGetErrNo

int ProLatGetErrNo()
Returns the last error code set by ProLat DLL functions. Typically this function is only called if

any of the ProLat DLL functions return 0 which indicates an error. Pass the result of this
function to ProLatStrErr to get an error message.

ProLatStrErr

void ProLatStrErr(int iErrNo, char *sMsg, int iMaxChars)

iErrNo is the return value from ProLatGetErrNo. It is typically called only after a
ProLatDefine...() function returns false.

*sMsg: A pointer to a text string with zero terminator to receive the message.

iMaxChars: The size of the sMsg text buffer. This is so ProLatStrErr does not fill past the end
of the buffer area and cause a memory error.

ProLatSetFilePath

void ProLatSetFilePath(const char sDir)

Defines the directory where the ProLat support files are located. Normally prolat.dll will be able
to find its support files in the same directory as the prolat.dll file. However, in some cases you
may wish to place the support files in a different directory. This function can then specify where
they are located.

51

Win32/64 Reference

ProLatEllipsoidinverse

int ProLatEllipsoidinverse (int Handle, double *dfLatFrom, double *dfLonFrom,
double *dfLatTo, double *dfLonTo, double *dfGeodesic,
double *dfAzForward, double *dfAzBack, int iCount)

Calculates the geodesic (shortest distance), the Forward Azimuth (angle from North), and the
Back Azimuth accurate to the ellipsoid.

Returns 0 for success and non-zero for an error condition.

Handle: The handle returned from a ProLatDefine function. It represents the coordinate system
with an xy projection.

* dfLatFrom: A pointer to an array of double float values with the starting latitude values.
*dfLonFrom: A pointer to an array of double float values with the starting longitude values.
*dfLatTo: A pointer to an array of double float values with the destination latitude values.
*dfLonTo: A pointer to an array of double float values with the destination longitude values.

* dfGeodesic: A pointer to an array of double float to receive the results of the geodesic
calculation.

*dfAzForward: A pointer to an array of double float to receive the forward azimuth values.
*dfLatTo: A pointer to an array of double float to receive the back azimuth values.

iCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid. The To and From positions should not be at a geographic pole.

int ProLatEllipsoidinverse2 (double a double rf, double *dfLatFrom, double *dfLonFrom,
double *dfLatTo, double *dfLonTo, double *dfGeodesic,
double *dfAzForward, double *dfAzBack, int iCount)

This function takes the ellpsoid parameters ‘a’ and ‘rf’ as parameters instead of a ProLat handle.
Otherwise it is the same.

52

Win32/64 Reference

ProLatScaleConvergence

int ProLatScaleConvergence (int Handle, double *dfX, double *dfY,
double *dfScale, double *dfConvergence, int iCount)

Calculates the scale factor and convergence angle for the given XY points of a projection against
the ideal scale and true north.

Returns 0 for success and non-zero for an error condition.

Handle: The handle returned from a ProLatDefine function. It represents the coordinate system
with an xy projection.

*dfX: A pointer to an array of double float values with the X (Easting) values.
*dfY: A pointer to an array of double float values with the Y (Northing) values.

* dfScale: A pointer to an array of double float to receive the results of the scale factor
calculation.

* dfConvergence: A pointer to an array of double float to receive the convergence angle.

iCount : The number of coordinate points to convert.

This function uses the T. Vincenty modified Rainsford’s method which is accurate to the
ellipsoid.

53

Win32/64 Reference

ProLatGetDMS

int ProLatGetDMS (const char *sData,
double *v1, double *v2, double *v3,
int iNSpace, int *piNFound,
char *sErrMsg, int iMsgSize, int iOrder)

ProLatGetDMS converts text coordinates to double floating point values suitable for coordinate
conversion. It reads most commonly used latitude longitude and decimal formats. See the syntax
details below for complete details.

A few common formats are:
102d49’12.81"W 35d15°38.36”N 100.72 (100.72 is an optional height or altitude)
W102°49'12.81” N35°15’38.36” 100.72
W 102 49.2135 N 3515.63933 100.72
102.820225 W 35.2606556 N 100.72

Returns 0 for success and non-zero for an error condition. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

*sData: The string containing text coordinates. A string may contain more than one coordinate
separated by newline characters. The results are placed in the v1, v2, v3 arrays.

*v1, *v2, *v3: Arrays of double floating point. The coordinates found in the sData string will be
placed into these arrays. The iOrder parameter determines if ProLatGetDMS detects
latitude verses longitude values and in which array they land. For example, iOrder=1 will
cause longitude values to go in v1 and latitude values to go in v2 even if the coordinates
are written in latitude longitude order. The array v3 receives the optional altitude.

iNSpace: The size of the passed v1, v2, v3 arrays.

*piNFound: A pointer to a 4-byte integer returns the number of coordinates that were detected.

*sErrMsg: A pointer to a string that will receive an error message if an error is encountered.
This may be NULL to avoid returning an error string..

iMsgSize : The size of the sErrMsg string to avoid writing past the end of the string memory.

iOrder: Determines how latitude longitude values are place in arrays v1 or v2.

0: No latitude longitude detection. The first coordinate value is placed in v1, the
second in v2, and the third in v3.
1: Place longitude values in v1, latitude in v2, and altitude in v3. Uses heading

letters ‘E” and ‘W’ to detect longitudes, and ‘N’ and ‘S’ to detect latitude. For
example: N10.5 W30.5 would get vi=30.5 v2=10.5 v3=0.0.

54

Win32/64 Reference

Note: Coordinates that have no heading letter will always be placed in v1 and v2 in the
order they are detected. It is up to the calling code to determine their order, usually by

some user selectable option.

Syntax:

ProLatGetDMS uses pattern recognition to flexibly detect many different coordinate formats.

Here is the general syntax specification:

sData contains a list of one or more text coordinates separated by carriage returns or line feeds.
The string may contain the following elements:

Comments are allowed with the following notation:

Comments:
// Comment to end of line
Comment to end of line
% Comment to end of line
[* 0% Comment between /* and */

Ignored characters:
space, tab, comma, semicolon, colon,

and space followed by minus and another space * - ¢

Coordinates:
A coordinate has the following format:

DMS DMS [optional altitude]

DMS is a flexible format for degrees minutes seconds and heading. Both DMS values in a
coordinate need to have the same format.

Degrees Minutes Seconds Heading
Degrees Minutes Heading

Degrees Heading

Heading Degrees Minutes Seconds

Possible formats include:

Degrees Minutes Seconds Heading [altitude]
Degrees Minutes Heading [altitude]
Degrees Heading [altitude]
Heading Degrees Minutes Seconds [altitude]

Heading Degrees Minutes Heading Degrees Minutes [altitude]
Heading Degrees Heading Degrees [altitude]
Decimal Decimal [altitude]
Degrees unsigned decimal value followed by a space, d, D, or °
Minutes unsigned decimal value followed by a space, or'
Seconds unsigned decimal value followed by a space, or "
Heading the letters E, e, W, w, N, n, S, or s

The letters W, w, S, and s will create a negative value.

Minus signs are ignored for Degrees Minutes and Seconds.
Decimal signed decimal value with no heading letter

55

Win32/64 Reference

Note that commas are used as separators only. They may not be used as a decimal mark or
thousands marker.

Syntax Examples:

80d25°49.12”W 35d41°29”N /I USGS common
802549.12E 3541298 // Degrees Minutes Seconds
35°41°29”N 80°25°49.12”W 100.7 // With altitude
W80d25°49.12” N35d41°29”

80°25.81867°W 35°41.48333°N /I Degrees Minutes
3541.48333 S 8025.81867 E

W80d25.81867 N35d41.4833

W80 25.81867 N3541.4833 // Garmin common
80.4303111dW 35.6913889dN // Degrees
80.4303111 W 35.6913889 N

S 35.691389° E 80.4303111°

W80.4303111 N35.691389

-80.4303111 35.691389 // Decimal
500145.387 2457353.25 // Decimal UTM easting, northing

ProLatGetDMS Programming Example:

Dim V1[100] as Double
Dim V2[100] as Double
Dim V3[100] as Double
Dim sData as String

Dim sErr as String * 256
Dim iRet as Long

Dim iNDetected as Long

shbata = "80 25 49.12 W 35 41 29N" & Chr(13) & _
"12 25 49.12 E 15 41 29 S 225.4"

iRet = ProLatGetDMS (sData, V1, V2, V3, 100, iNDetected, sErr, 256, 1)
if iRet > 0 then MsgBox sErr
' Returns iNDetected = 2

YV V1[1] -80.430311111 V2[1]
YV VI[1] -12.430311111 V2[1]

=

35.820225 V3[1l] = 0.0
-15.820225 V3[1l] = 225.4

56

Win32/64 Reference

ProLatGetDMSSingle

int ProLatGetDMSSingle (const char *sData, double *v1, int *piHeading,
int iNSpace, int *piNFound, char *sErrMsg, int iMsgSize)

ProLatGetDMSSingle converts a single value instead of a full coordinate pair.

A few common formats are:
102d49°12.81"W
W 102 49 12.81
117 23.714 E
35.2606556 N

Returns 0 for success and non-zero for an error condition. When an error occurs the returned
coordinates are invalid and the source should be corrected before continuing.

*sData: The string containing text coordinates. A string may contain more than one coordinate
separated by newline characters. The results are placed in the v1, v2, v3 arrays.

*v1: Array of double floating point. The value found in the sData string will be placed into this
array.

*piHeading: Array of 4-byte integers. Indicates the heading value detected: 0 no heading
detected, 1 North, 2 South, 3 East, 4 West. Note that when South and West headings
are detected the value in v1 is negative.

iNSpace: The size of the passed vl and piHeading arrays.

*piNFound: A pointer to a 4-byte integer returns the number of coordinates that were detected.

*sErrMsg: A pointer to a string that will receive an error message if an error is encountered.
This may be NULL to avoid returning an error string..

iMsgSize : The size of the sErrMsg string to avoid writing past the end of the string memory.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

57

Win32/64 Reference

ProLatGetLat

int ProLatGetLat (const char *sPoint, double *Lat)
This function converts a text latitude to a double floating point value.
Return value is 0 for success, and 1 syntax error, 2 out of range, 3 invalid heading

* sPoint. The latitude value which may be a DMS formatted value such as N 47 35 11.35.

*Lat. A double variable pointer that receives the latitude value.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

ProLatGetLon

int ProLatGetLon (const char *sPoint, double *Lon)
This function converts a text longitude to a double floating point value.
Return value is 0 for success, and 1 syntax error, 2 out of range, 3 invalid heading
* sPoint. The longitude value which may be a DMS formatted value such as W 47 35 11.35.
*Lon: A double variable pointer that receives the longitude value.

See the syntax description of ProLatGetDMS for details of the possible text format that may be
detected. This function however, just detects the one value instead of a full coordinate pair.

58

Win32/64 Reference

ProLatDMSFormat

int ProLatDMSFormat (char *sFormat, double *pdfX, double *pdfY, double *pdfZ,
int iNCount, char * sOut, int iOutSpace)

This function provides flexible Degree Minute Second formatting of coordinate points.
*sFormat: The string containing output formatting. See below for the syntax.

*pdfX, *pdfY, *pdfZ: Arrays of double floating point. The coordinates points to be formatted.
iNCount: The number of coordinates to format. This is the size of the above arrays.

*sOut: A pointer to a text string where the formatted output is to be placed.

*iOutSpace : The number of characters of space available in the sOut string.

Returns 0 for success and non-zero for an error.

ProLatDMSFormat provides easy and flexible output formatting features. It provides an Auto
format option and a custom format may be entered to get exactly the text format needed.

Examples:

Format: Example Output:

Auto Lon Lat Alt for < 180 W81 25.12345 N37 42.12345 0.00
XYZ for > 180 410500.12 1510100.12 0.00

ED M.MMMMMUND M.MMMMMZ.ZZ W81 25.1234 N3742.1234 0.00

D M S.SSN\tD M S.SSE 3512 7.12N 91 27 54.12W

XXXYYY 410578.12 1500100.12

X XUXXMY: Y.YY\WZ: Z.ZZ X: 410578.12 Y:1500100.12 Z:300.12

Output Format Syntax:

Code Generates
XX XX X value without heading letter.
Number of X's before and after the period control space padding and precision.

YY.YY Y value without heading letter
Number of Y's before and after the period control space padding and precision.

2277 Z value without heading letter
Number of Z's before and after the period control space padding and precision.

EorO Heading letter for Longitude. Outputs ‘E’ for eastern and ‘W’ for western (negative).

59

Win32/64 Reference

NorA

D.DD

M.MM

S.SS

\c

c

Use O to identify the value as longitude without printing a heading letter.

Heading letter for Latitude. Outputs ‘N’ for northern and ‘S’ for southern (negative).
Use A to identify the value as the latitude without printing a heading letter.

Degrees.

Number of D’s before and after the period control zero padding and precision.

D without decimal provides unsigned integer degrees.

For decimal degrees without a heading letter, use X.XX or Y.YY. If D.DD is used without
a heading letter (E or N) Longitude-Latitude order is assumed.

Minutes.
Number of M’s before and after the period control zero padding and precision.
M without decimal provides unsigned integer minutes.

Seconds.
Number of S’s before and after the period control zero padding and precision.

Special character. Example to insert a D character use \D, for tab use \t, new line use \n

Characters may be inserted without a \ if they don't conflict with format characters.

Examples: Any lowercase letter, space, comma, colon, semicolon, etc.

Helper functions:

In special cases it may be desirable to parse the format string once and produce one formatted
output at a time. ProLatDMSFormat is just as efficient and is the recommended solution, so only
use the following functions if you know they are necessary.

int ProLatDMSFormatParse (const char *sFormat, int *FormatArray);

This function requires an empty integer array of at least 100 in length for the function to
store a parsed format. The FormatArray is then passed to the following function to
efficient

int ProLatDMSFormatl (int *FormatArray, double dfX, double dfY, double dfZ,

char *sOut, int iOutSpace);

This function formats one output value at a time using a FormatArray produced by
ProLatDMSFormatParse.

60

Win32/64 Reference

Reading and Writing PRJ and WKT files

Three functions are available to process PRJ and WKT (Well Known Text) files. ProLat treats
both file types the same. The functions take a string of one type and converts it. It is necessary
to provide the code to read and write the files.

ProLatConvertPRJToStr Converts a PRJ/WKT/ string to a ProLat custom parameter string.
ProLatConvertStrToOESRI ~ Converts a ProLat custom string to a PRJ string.
ProLatConvertStrToWKT Converts a ProLat custom string to WKT (Well Known Text)
ProLatConvertHandleToStr Converts a ProLat coordinate system handle to a custom string.

A typical approach would be to use ProLatConvertPRJToStr to produce a string that may be used

with ProLatCustomAdd and ProLatDefineCustom to get a ProLat coordinate system handle.
This handle may then be used with ProLatTransform to convert coordinates.

ProLatConvertPRJToStr

int ProLatConvertPRJToStr (const char *sPRJ, char *sOutCust, int iOutLen)

*sPRJ. A string containing a PRJ or WKT coordinate system.

*sOutCust: A string that receives the coordinate system converted to ProLat custom format.
*iOutLen: The length of allocated space in bytes reserved for the sOutCust string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert common PRJ and WKT coordinate system definitions into the
ProLat custom format which may be used with the ProLatCustomAdd and ProLatCustomDefine

functions. The function needs to be used with care and the user should very that parameters are
converted successfully.

61

Win32/64 Reference

ProLatConvertStrToESRI

int ProLatConvertStrToESRI (const char *sCustStr, char *sESRI, int iOutLen)
*sCustStr: A string containing a ProLat custom coordinate system string.

* SESRI: A string that receives the coordinate system converted to ESRI PRJ format.
*iOutLen: The length of allocated space in bytes reserved for the sESRI string.
Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert a ProLat custom string to the ESRI PRJ format. The function
needs to be used with care and the user should very that parameters are converted successfully.

ProLatConvertStrToWKT

int ProLatConvertStrToWKT(const char *sCustStr, char *sWKT, int iOutLen)
*sCustStr: A string containing a ProLat custom coordinate system string.

* sWKT: A string that receives the coordinate system converted to WKT PRJ format.
*iOutLen: The length of allocated space in bytes reserved for the sESRI string.
Return value: Returns 0 for success and non-zero for an error.

This function attempts to convert a ProLat custom string to the ESRI PRJ format. The function
needs to be used with care and the user should very that parameters are converted successfully.

Currently support is not provided for State Plane Coordinate Systems using the “+init=NAD27”
or “+init=NAD&3”.

This function is different than the ProLatConvertStrToESRI function because it does not apply
ESRI specific conventions to the coordinate system.

62

Win32/64 Reference

ProLatConvertHandleToStr

int ProLatConvertHandleToStr (int Handle, char *sCustStr, int iOutLen)
Handle: ProLat handle.
*sCustStr: A string that receives the ProLat custom string definition.

*iOutLen: The length of allocated space in bytes reserved for the sCustStr string.

Return value: Returns 0 for success and non-zero for an error.

This function attempts to extract the ProLat custom string defintion for the coordinate system
defined in the Handle. If for some reason the coordinate system cannot be represented by a
string, a value of 1 is returned.

63

Win32/64 Reference

ProLatX ActiveX DLL

The ProLat DLL functions are provided in a convenient ActiveX DLL for use by Visual Basic
and VBScript applications with ASP (Active Server Pages). The files are located in
examples\ProLatX.

It works only on the server side because the ProLatX ActiveX DLL is a wrapper for the standard
ProLat Windows DLL.

To use ProLatX with ASP VBScript, you will need prolatx.dll, prolat.dll and the other support
files depending on type of conversions needed. You must also be familiar with ASP
programming.

From a DOS shell prompt run REGSVR32 PROLATX.DLL to register it.

ProLatX is an apartment threaded ActiveX DLL. To make it work in Visual Basic it is required
to use the Project -> References and check the ProLatX option. After this is done you can create
an object from it using one of two ways.

Method 1: Set a global variable of type ProLat such as:

Private mProLat As ProLat

Then use the New operator to create the object:

Private Sub Form Load()
Set mProLat = New ProlLat
End Sub

Private Sub Form Unload(Cancel As Integer)
Set mProLat = Nothing
End Sub

Method 2: Use the CreateObject method. Note this still requires the ProLatX to be selected in
the References list.

Set oProLat = Server.CreateObject("ProlatX.Prolat")

64

Win32/64 Reference

List of ProLatX Methods and Properties

ProLatX Method Equivalent ProLat DLL Function
DefineLatLong ProLatDefineLatLong
DefineUTM ProLatDefineUTM
DefineSPCS ProLatDefineSPCS
DefineGeocentric ProLatDefineGeocentric
DefineFromFile ProLatDefineFromFile
CustomAdd ProLatCustomAdd
DefineCustom ProLatDefineCustom
Transform (Use properties X,Y,Z and ProLatTransform
TransformlInternal for ASP)

CloseDefinition ProLatClose

GetErrNo ProLatGetErrNo

StrErr ProLatStrErr
TransformInternal *

GetDMS ProLatGetDMS

X (property)

Y (property)

Z (property)

* Note that TransformInternal performs the transform on X,Y, and Z properties. The result will
be these properties being in the destination coordinate system.

ProLatX source code is included in the file ProLatX.vbp and ProLat.cls. An example standard
VB application is provided in PLCalcX.vbp.

65

Win32/64 Reference

Creating DMS Values From Decimal Values

For readability, DMS (Degrees Minutes Seconds) format is commonly used. Use the functions
in the preceding section to format DMS output, or use the following steps to manually convert
the decimal latitude/longitude results into DMS format.

1.

Get the heading from the sign of the value. For longitudes, a negative number is West
and a positive number is East. For Latitudes, a negative number is South and a positive
number is North.

Convert negative values to be positive, because all DMS values are positive with heading
shown by a direction letter such as W, E, N, S

Get degrees by taking the integer part of the decimal value.

Degrees = Int(Value)

Get minutes by taking the decimal part and multiplying by 60.
Minutes = (Value - Int(Value)) * 60.0

This gives minutes with a decimal fraction. Stop here if you just need degrees with
fractional minutes. Go to Step 5 to get seconds.

Get seconds by taking the decimal part of the minutes and multiplying by 60.

Seconds = (Minutes - Int (Minutes)) * 60.0

Remove the decimal portion from the minutes
Minutes = Int (Minutes)

DMS values are formatted in many ways. There does not seem to be a universal standard. We
recommend using pure decimal values when possible because they are easily readable by code.
Decimal does not include heading letters, so it is necessary to document which value is longitude
and which value is latitude.

Decimal format lon/lat: -98.185741 35.821771
Decimal with heading: W98.185741 N35.821771
Heading Degrees Minutes: WO8 11.14446 N3549.30626

Degrees Minutes Seconds Heading: 98d11'8.6676"W 35d49'18.3756"N

66

Custom Coordinate Systems

Custom Coordinate Systems

It is possible to define custom coordinate systems using a Proj.4 compatible definition string
with the ProLat CoordSys.GetCS() function. See below for parameter details.

Example Coordinate System Definition

To create a custom coordinate system using a parameter list, it is necessary to know something
about the selected projection’s details. It may be necessary to refer to other literature to get
complete details and usage of a projection. However, it is sometimes possible to select
parameters based on the coordinate specifications.

For example, you receive a set of coordinates that have the following specs:

Lambert Conformal Conic, WGS84 datum, Central meridian of W122 degrees, latitudes of
intersection at N41d40 and N39d20, central latitude at N39d20, with false easting of
2,000,000 and false northing of 500,000.

After looking through the available parameters in the list below, it is possible to determine the
parameters and create the following string for use with CoordSys.GetCS():

proj=lcc datum=NAD83 lon 0=-122 lat 1=41d40 lat 2=40 lat 0=39d20
x 0=2000000 y 0=500000

Required Parameters

A coordinate system requires proj= parameter. It also requires either datum= parameter or else a
definition of the ellipse along with a nadgrids= or or a towgs84= parameter which tells ProLat
how to convert to the WGS84 datum. It also needs projection parameters. Most projections use
lon_ 0= for the central meridian and 1at 0= for the central parallel. All Cartesian projections
allow x_0=andy 0= to provide false easting and northing. See the projection descriptions later
in this manual for special parameters needed by some projections.

Parameter List

The following parameters and usage varies with the projection selected. The options are
processed in left to right order. Reentry of an option is ignored with the first occurrence assumed
to be the desired value.

No spaces may be placed around the equal sign. A parameter without an equal sign shown
below will activate that option without requiring additional parameter information. A plus sign
before the parameter is optional.

proj=name Required for selection of the transformation, and name is from the list of available

projections. See Projection Descriptions later in this section for additional
parameter information for selected projections.

67

Custom Coordinate Systems

Example: proj=tmerc
Available Projection Names

For detailed parameter information see the section on Projection Descriptions. Please contact
Effective Objects if a projection is needed that is not listed here.

aea Albers Equal Area putp1 Putnins P1
aeqd Azimuthal Equidistant sinu Sinusoidal (Sanson-Flamsteed)
airy Airy somerc Swiss Oblique Mercator
aitoff Aitoff stere Stereographic
eck3 Eckert Il sterea Oblique Stereographic Alternative
eck6 Eckert VI tmerc Transverse Mercator
geocent Geocentric, ECEF, XYZ ups Universal Polar Stereographic
gn_sinu General Sinusoidal Series urmfps Urmaev Flat-Polar Sinusoidal
kav7 Kavraisky VI utm Universal Transverse Mercator
krovak Krovak prOjeCtion Vandg van der Grinten |
latlong Latitude/Longitude (non-projected) vandg2 van der Grinten Il

(also latlon, longlat, lonlat) vandg3 van der Grinten llI
Icc Lambert Conformal Conic Vandg4 van der Grinten IV
leac Lambert Equal Area wag Wagner | (Kavraisky V1)
Isat Space oblique for LANDSAT wag2 Wagner I
mbtfps McBryde-Thomas Flat-Polar wag3 Wagner Il

Sinusoidal wag4 Wagner IV
moll Mollweide WagS Wagner V
nzmg New Zealand Map Grid wagb Wagner VI
omerc Oblique Mercator wintry Winkel Tripel
ortho Orthographic
poly Polyconic (American)

+ellps=name The +ellps option allows selection of standard, predefined ellipsoid figures. This
parameter is required if the +datum parameter is not used. For spherical only
projections, the major axis is used as the radius. Alternatively, it is possible to
specify the ellipse with the a= and r f= parameters.

Available Ellipsoids

MERIT a=6378137.0 rf=298.257 MERIT 1983

SGS85 a=6378136.0 rf=298.257 Soviet Geodetic System 85
GRS80 a=6378137.0 rf=298.257222101 GRS 1980(IUGG, 1980)
IAU76 a=6378140.0 rf=298.257 IAU 1976

airy a=6377563.396 b=6356256.910 Airy 1830

APL4.9 a=6378137.0. rf=298.25 Appl. Physics. 1965
NWLID a=6378145.0. rf=298.25 Naval Weapons Lab., 1965
mod_airy a=6377340.189 b=6356034.446 Modified Airy

andrae a=6377104.43 r=300.0 Andrae 1876 (Den., Icind.)
aust SA a=6378160.0 rf=298.25 Australian Natl & S. Amer. 1969
GRS67 a=6378160.0 rf=298.2471674270 GRS 67(JUGG 1967)
bessel a=6377397.155 rf=299.1528128 Bessel 1841

bess_nam a=6377483.865 rf=299.1528128 Bessel 1841 (Namibia)

68

Custom Coordinate Systems

clrk66 a=6378206.4 b=6356583.8 Clarke 1866

clrk80 a=6378249.145 rf=293.4663 Clarke 1880 mod.

CPM a=6375738.7 rf=334.29 Comm. des Poids et Mesures 1799
delmbr a=6376428. rf=311.5 Delambre 1810 (Belgium)
engelis a=6378136.05 r=298.2566 Engelis 1985

evrst30 a=6377276.345 rf=300.8017 Everest 1830

evrst48 a=6377304.063 rf=300.8017 Everest 1948

evrst56 a=6377301.243 rf=300.8017 Everest 1956

evrst69 a=6377295.664 rf=300.8017 Everest 1969

evrstSS a=6377298.556 rf=300.8017 Everest (Sabah & Sarawak)
fschr60 a=6378160. rf=298.3 Fischer (Mercury Datum) 1960
fschr60m a=6378155. rf=298.3 Modified Fischer 1960
fschr68 a=6378150. rf=298.3 Fischer 1968

helmert a=6378200. rf=298.3 Helmert 1906

hough a=6378270.0 rf=297. Hough

intl a=6378388.0 rf=297. International 1909 (Hayford)
krass a=6378245.0 rf=298.3 Krassovsky, 1942

kaula a=6378163. rf=298.24 Kaula 1961

lerch a=6378139. rf=298.257 Lerch 1979

mprts a=6397300. r=191. Maupertius 1738

new_intl a=6378157.5 b=6356772.2 New International 1967
plessis a=6376523. b=6355863. Plessis 1817 (France)
SEasia a=6378155.0 b=6356773.3205 Southeast Asia

walbeck a=6376896.0 b=6355834.8467 Walbeck

WGS60 a=6378165.0 rf=298.3 WGS 60

WGS66 a=6378145.0 rf=298.25 WGS 66

WGS72 a=6378135.0 rf=298.26 WGS 72

WGS84 a=6378137.0 rf=298.257223563 WGS 84

sphere a=6370997.0 b=6370997.0 Normal Sphere (1=6370997)

+datum=name Allows selection of a standard predefined datum name. The supported datum
names are shown below. If+datum is not used, it is required to specify the

+ellps= parameter, and if necessary the +nadgrids= or +towgs84=

parameters.

name ellipse definition/comments

WGS84 WGS84 towgs84=0,0,0

GGRS87 GRS80 towgs84=-199.87,74.79,246.62
Greek Geodetic Reference System 1987

NADS3 GRS80 towgs84=0,0,0
North American Datum_ 1983

NAD27 clrk66 nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntvl can.dat
North American Datum 1927

potsdam bessel towgs84=606.0,23.0,413.0
Potsdam Rauenberg 1950 DHDN

carthage clark80 towgs84=-263.0,6.0,431.0
Carthage 1934 Tunisia

hermannskogel bessel towgs84=653.0,-212.0,449.0
Hermannskogel

ire65 mod_airy towgs84=482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15
Ireland 1965

nzgd49 intl towgs84=59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993

New Zealand Geodetic Datum 1949

69

Custom Coordinate Systems

OSGB36

+lat 0=
+k or +tk_0=

+a=
+b=

+es=

+e=
+=
+rf=
+pm=

+R=

airy towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894
Airy 1830

False easting is added to x value of the Cartesian coordinate. May be used in
most projections except longlat and geocent coordinates.

False northing is added to y value of the Cartesian coordinate. See +x 0.

Central meridian. Along with +lat 0, normally determines the geographic origin
of the projection.

Central parallel. See +lon 0.

Scale factor at the central meridian. The default value is 1.

Specifies an elliptical Earth’s major axis a.

Specifies an elliptical Earth’s minor axis b.

Defines the elliptical Earth’s squared eccentricity, e2. Optionally, either b=
(minor axis), e= (eccentricity), rf=1/f (reciprocal flatten), or f= (flattening) may be
used.

e? = (a’> - b?) / a?

Eccentricity.

Flattening. f=(a—b)/a

Reciprocal Flattening. rf=1/f

Prime meridian relative to Greenwich.

Specifies that the projection should be computed as a spherical Earth with radius
R. This parameter takes precedence over the elliptical parameters.

The following radius parameters are used with elliptical Earth parameters. They allow
projections to be computed in the spherical form when specified. For projections that only
perform computations for a sphere, this method is preferable to the default of using the major
axis as the radius.

+R_A

+R_V

Determines that spherical computations be used with radius of a sphere that has a
surface area equivalent to the selected ellipsoid.

Used with elliptical Earth parameters. Radius of a sphere with equivalent volume
of specified ellipse.

70

Custom Coordinate Systems

+R a

+R g

+R h

+R lat_a=

+R lat _g=

+units=name

Used with elliptical Earth parameters. Spherical radius of the arithmetic mean of
the major and minor axis is used. R _a = (a+b)/2

Used with elliptical Earth parameters. Geometric mean of the major and minor
axis, R_g = (ab)!”?

Used with elliptical Earth parameters. Harmonic mean of the major and minor
axis, R_h =2ab/(a+b)

Used with elliptical Earth parameters. Spherical radius of the arithmetic mean of
the principle radii of the ellipsoid at latitude R lat aisused. +R lat g=R lat a
can be use for equivalent geometric mean of the principle radii.

Used with elliptical Earth parameters. Geometric mean of the principle radii at
latitude R lat g. See R Iat a.

Selects conversion of Cartesian values to units specified by name. When used,
other + metric parameters must be in meters.

Example: +units=us-ft
Unit Conversion from Description
Parameter meters
km 1000. Kilometer
m 1.0 Meter
dm 1/10 Decimeter
cm 1/100 Centimeter
mm 1/1000 Millimeter
kmi 1852.0 International Nautical Mile
n 0.0254 International Inch
ft 0.3048 International Foot
yd 0.9144 International Yard
mi 1609.344 International Statute Mile
fath 1.8288 International Fathom
ch 20.1168 International Chain
link 0.201168 International Link
us-in 1.0/39.37 U.S. Surveyor’s Inch
us-ft 0.304800609601219 U.S. Surveyor’s Foot
us-yd 0.914401828803658 U.S. Surveyor’s Yard
us-ch 20.11684023368047 U.S. Surveyor’s Chain
us-mi 1609.347218694437 U.S. Surveyor's Statute Mile
ind-yd 0.91439523 Indian Yard
ind-ft 0.30479841 Indian Foot
ind-ch 20.11669506 Indian Chain

71

Custom Coordinate Systems

+geoc When this option is present, it treats the latitude angle of the other coordinate system as
geocentric instead of the normal geodetic. In the diagram below, ¢g is the geocentric latitude
relative to the center of the earth, and ¢ is the commonly used geodetic latitude relative to the
tangent line at the earth’s surface at that location.

It is important to remember that this option treats the other coordinate system as having a
geocentric latitude. This may not make sense for some coordinate systems, so care is

required.
The two latitudes are related by:
b* b
tang, =—tan g
£ o\
a
+over Inhibit reduction of input longitude values to a range within +/-180degrees of the

central meridian.

72

Custom Coordinate Systems

+towgs84= Datum shifts can be approximated by 3 parameter spatial translations (in
geocentric Xyz space), 7 parameter shifts (translation + rotation + scaling), and 10 parameter
shifts (translation + rotation + scaling + point of rotation).

In the 3 parameter case, the three arguments are the translations to the geocentric location in
meters. For example the EPSG database uses the following 3 parameter towgs84 for the
Greek GGRS87 datum to WGS84.

+towgs84=-199.87,74.79,246.62

A 7 parameter example from the EPSG database is used for transforming from WGS72 to
WGS84.

+towgs84=0,0,4.5,0,0,0.554,0.219

Effective Objects provides the following information from the USGS sources. You may
need to refer to additional resources to get complete details in creating +towgs84 parameters.

The seven parameter case uses delta_x, delta_y, delta_z, Rx - rotation X, Ry - rotation Y, Rz -
rotation Z, M_BF - Scaling. The three translation parameters are in meters as in the three
parameter case. The scaling is the scale change in parts per million. For complete details see
EPSG transformation method (trf method's 9603 and 9606).

In ProLat, the following calculations are used to apply the towgs84 transformation (going to
WGS84). The x, y and z coordinate arrays are in geocentric coordinates. The 7 towgs84

parameters are stored in the array towgs84[]

Three parameter transformation (simple offsets):

x[1i] = x[i] + towgs84[0];
y[i] = y[i] + towgs84[1];
z[i] = z[i] + towgs84[2];

Seven parameter transformation (translation, rotation and scaling):

Rx BF = towgs84[3]; Ry BF = towgs84[4];
Rz BF = towgs84([5]; M BF = towgs84[6];
x_out = M BF*(x[i] - Rz BF*y[i] + Ry BF*z[i]) + towgs84[0];
y out = M BF*(Rz BF*x[i] + y[i] - Rx BF*z[i]) + towgs84[1];
z out = M BF*(-Ry BF*x[i] + Rx BF*y[i] + z[1i]) + towgs84[2];

Note that EPSG method 9607 (coordinate frame rotation) coefficients can be converted to
EPSG method 9606 (position vector 7-parameter) supported by ProLat by reversing the sign
of the rotation vectors. The methods are otherwise the same.

A 10 parameter Molodenski-Badekas example from EPSG Guidance Note number 7, part 2
is used for transforming from La Canoa:

+towgs84=-270.933,115.599,-360.226-5.266,1.238,-2.381,-5.109,2464351.59,-5783466.61,974809.81

73

Custom Coordinate Systems

+nadgrids=file Specify a grid file or list of files to use in shifting a coordinate from a datum to
WGS84.

The convention in ProLat is for a grid file to shift from some datum such as NAD27 to the
NADS83/WGS84 datum. This provides a convenient standard to allow converting between
any coordinate system to another coordinate system, because WGS84 is the common
intermediate datum.

Use of grid shifts is specified using the "nadgrids" keyword in a coordinate system definition.
+nadgrids=ntvl can.dat

In this case the ntvl can.dat grid shift file is loaded, and used to get a grid shift value for the
selected point.

When +nadgrids is used, the parameter +datum should not be used. Instead, use the +ellps
parameter, such as +ellps=clrk66. ProLat will use the +nadgrids option for shifting
coordinates, and the +ellps parameter just lets the system know it is a different datum in
order to activate the grid shift file.

It is possible to list multiple grid shift files, in which case each will be tried in turn till one is
found that contains the point being transformed.

+nadgrids=conus,alaska,ntvl _can.dat,hawaii, stgeorge,stlrnc, stpaul

Important: Where grids overlap (such as conus and ntvl can.dat for instance) the first valid
file found for a point will be used regardless of whether it is appropriate or not. So, for
instance, +nadgrids=ntv1 can.dat,conus would result in the Canadian data being used for
some areas in the northern United States even though the conus data is the approved data to
use for the area. Careful selection of files and file order is necessary. In some cases border
spanning datasets may need to be pre-segmented into Canadian and American points so they
can be properly grid shifted.

Skipping Missing Grids
The special prefix @ may be prefixed to a grid to make it optional. If it not found, the search
will continue to the next grid. Normally any grid not found will cause an error. For instance,

the following would use the ntv2 0.gsb file if available, otherwise it would fallback to using
the ntvl can.dat file.

+nadgrids=@ntv2 0.gsb,ntvl can.dat

74

Custom Coordinate Systems

Available Grids
Extent

Region Parameter East West South North
Conterminous U.S. conus.ncn 131°'W 63° W 20°N 50° N
Alaska alaska.ncn 194° W 128°W 46° N 77° N
Hawaii hawaii.ncn 161°W 154° W 18° N 23° N
Puerto Rico and Virgin prvi.ncn 68° W 64° W 17° N 19° N
Islands

St. George Is., AK stgeorge.ncn 171° W 169° W 56°N 57°N
St. Lawrence Is., AK stlrnc.ncn 172° W 168° W 62° N 64° N
St. Paul Is., AK stpaul.ncn 171° W 169° W 57°N 58° N
Canada ntvl can.dat

An improved Canadian grid shift file (NTV2_0.GSB) is available for free download from the
NRCan web site at http://www.geod.nrcan.gc.ca/index e/products_e/software e/ntv2_e.html.
Save it in the directory with the other ProLat support files. Use “+nadgrids=NTV2.GSB” to

access it.

HARN/HPGN grid files are included with ProLat. See the HARN and HPGN section below
for complete details. Use CoordSys.GetDatums() to get a complete list of datums, which

include the HARN datum definitions.

75

Custom Coordinate Systems

Projection Descriptions

A brief description of selected projections and their parameters are provided in the table below.?
See parameter descriptions above for additional parameter information.

All projections require a parameter to specify the ellipsoid such as +datum=, +ellps=, or +a=
and +rf=.

Projection Parameters Description

tmerc: tproj=tmerc A common projection for large scale maps oriented in north-
Transverse :ZE—gz south strips. The parameter k is the scale factor at the central
Mercator tk= meridian, lat 0. x 0 and y 0 are commonly supplied for false

easting and northing so that the values are not negative.

Rt

tmerc with lon_0=90 and 15° grid

utm: Universal fproj=utm See discussion of UTM earlier in this manual. For regions
Transverse izzii; below the equator use the +south without an = sign.
Mercator

76

Custom Coordinate Systems

omerc:
Oblique
Mercator
Projection

lcc: Lambert
Conformal
Conic

Isat:
LANDSAT

merc:
Mercator

ups: Universal

Polar
Stereographic

+proj=omerc

+k=

+lat O=

+no_rot

and either
+lon 1=
+lat 1=
+lon 2=
+lat 2=

or
+alpha=
+lonc=
[tgamma=]

+proj=lcc
+lon O=
+lat O=
Secant
+lat 1=
+lat 2=
Tangent
+lat 1=
+k 0=
+proj=lsat
+1lsat=
+path=

+proj=merc
+lat_ts=

+proj=ups
+south

There are three methods to specify the parameters.
1. With two points (lon_1, lat 1) and (lon_2, lat 2) which will
determine a great circle, central line through each point, or
2. With a point of origin at (lonc, lat_0) and an azimuth alpha,
measured clock-wise from north, of the central line of the
projection.
3. A gamma= option may be added to option 2. to get the Rectified
Skew Orthomorphic (or Hotine Oblique Mercator).
The presence of +alpha= determines which method is used. The
Cartesian coordinates are rotated by —alpha unless +no_rot is
used.
Initialization will fail if control parameters nearly define a
transverse or normal (equatorial) Mercator projection.

A common projection for large scale maps oriented in east-west
strips. For Secant method, lat 1 and lat 2 are the latitudes of
intersection of the cone with the ellipsoid or sphere. For the
Tangent method, lat 1 is the latitude of tangency of the cone
with the ellipsoid or sphere.

This projection is for use with LANDSAT satellite data and is a
limited form of the more general Space Oblique Mercator
projection. The LANDSAT satellite number, 1sat, must be in
the range 1-5, and the path number, path, must be in the ranges
1-251 for Isat=1,2,3, or 1-233 for Isat=3,4. This is the
projection coded by John P. Snyder that started his career with
the USGS.

Used for equatorial regions. +lat ts is the latitude of true scale.

The UPS projection is a special case polar aspect of the
Stereographic projection designed to cover the regions where
latitude > 84°N or < 80°S. The internal Stereographic
parameters are fixed at k=0.994, lon 0=0,x 0=y 0=
2,000,000m, and lat 0 is either 90°N or 90°S when +south is
specified. Also see the UTM projection.

71

Custom Coordinate Systems

airy: Airy

krovak

tproj=airy
+lat b=
+no_cut

+proj=krovak
+ellps=bessel

ups projection from 74°N to 90°N. Note that center circle of
84°N represents the valid area.

The Airy projection is an azimuthal minimum error projection
for the region within the small or great circle defined by an
angular distance, lat_b, from the tangency point of the plane
(lon_0, lat_0). The default value for lat_b is 90° that is suitable
for hemispherical maps. Extent of projection is limited to the
hemisphere unless +no_cut is specified.

This projection requires few parameters. Results are negative
with southing in x and westing in'y. To get positive values with
westing in X and southing in y, use +krovakrevert.

78

Custom Coordinate Systems

HARN and HPGN

High Accuracy Reference Network (HARN) and High Precision Geodetic Network (HPGN) are
designations used for a statewide geodetic network upgrade. The acronyms HARN and HPGN
refer to the same thing. HARN has been adopted as the official name to reduce confusion. A
HARN is a statewide or regional upgrade in accuracy of NAD 83 coordinates using Global
Positioning System (GPS) observations.

ProLat uses NADCON tables from the United States National Geodetic Survey (NGS) to convert
NADS3 coordinates to HARN coordinates. To convert NADS83 to Kansas HARN, use
ProLatDefineLatLong() as shown in the following example:

To define a Harn/HPGN coordinate system, use CoordSys.GetCS() with a datum containing the
Harn description. Use CoordSys.GetDatums() for a complete list of available dataums.

harnAR = CoordSys.GetCS("LAT_LONG", "LAT-LONG", "NAD83-ARKANSAS-HARN”, “METERS”);
or, using Proj.4

harnAR = CoordSys.GetCS("proj=latlong el1ps=GRS80 nadgrids=arharn.hrn");

To convert a different coordinate system such as NAD27, State Plane, etc. to HARN, it is only
necessary to define that coordinate system and ProLatTransform will convert in one step. For
example:

Nad27 = CoordSyS.GetCS("LAT_LONG", "LAT-LONG", "NAD27”, “METERS”);
HarnAR = CoordSyS.GetCS("LAT_LONG", "LAT-LONG", "NAD83-ARKANSAS-HARN”, “METERS”);
coordsys.Transform(Nad27, HarnAR, Lon, Lat, z, 1);

High Accuracy Reference Network Grid Files

ProLat HARN/HPGN grid shift files use the format xxharn.ncn. xx indicates the region. The
.ncn extension indicates a nadcon grid shift file. These tables were prepared directly from
NADCON data and converted to shift to the NAD83 datum to match the ProLat standard of all
grid files shifting to WGS84/NADS3.

Extents

Area/State File Name Notes East West South North

°W °W °N °N
Alabama alharn.ncn 84 90 30 36
Arkansas arharn.ncn 89 95 32 37
Arizona azharn.ncn 108 116 30 38
California (North) cnharn.ncn Above 37 degrees latitude 114 125 36 43
California (South) csharn.ncn Below 37 degrees latitude 113 122 32 37
Colorado coharn.ncn 101 110 36 42
Florida flharn.ncn 80 88 24 32
Georgia gaharn.ncn 80 86 30 36
Guam * guharn.ncn 213 219 13 19
Hawaii hiharn.ncn 154 162 18 24

79

Custom Coordinate Systems

Idaho-Montana (East) emharn.ncn East of 113 degrees longitude 103 113 41 50
Idaho-Montana (West) ~ wmharn.ncn West of 113 degrees longitude 109 119 41 50

Towa iaharn.ncn 89 98 40 44
Illinois ilharn.ncn 85 92 36 43
Indiana inharn.ncn 81 89 37 46
Kansas ksharn.ncn 94 103 36 41
Kentucky kyharn.ncn 81 90 36 40
Louisiana laharn.ncn 88 95 27 34
Maryland — Delaware mdharn.ncn 74 80 37 41
Maine meharn.ncn 66 72 42 48
Michigan miharn.ncn 82 91 41 48
Minnesota mnharn.ncn 88 98 43 50
Mississippi msharn.ncn 86 92 29 36
Missouri moharn.ncn 88 97 35 42
Nebraska nbharn.ncn 95 105 40 44
Nevada nvharn.ncn 114 121 35 43
New England neharn.ncn CT, MA, NH, RI, VT 69 75 40 46
New Jersey njharn.ncn 70 76 38 44
New Mexico nmharn.ncn 101 110 31 38
New York nyharn.ncn 70 81 40 46
North Dakota ndharn.ncn 95 105 45 50
Ohio ohharn.ncn 80 86 38 43
Oklahoma okharn.ncn 94 104 33 38
Pennsylvania paharn.ncn 74 82 39 44
Puerto Rico-Virgin Is pvharn.ncn 62 68 17 21
Samoa * (Eastern Is) esharn.ncn JIglands of Ofu, Olosega, Ta'u 165 171 14 20
Samoa * (Western Is) wsharn.ncn [slands of Tutuila and Aunu'u 165 171 14 20
South Dakota sdharn.ncn 95 105 41 47
Tennessee tnharn.ncn 81 91 34 37
Texas (East) etharn.ncn East of 100 degrees longitude 88 100 25 35
Texas (West) wtharn.ncn West of 100 degrees longitude 99 107 25 37
Utah utharn.ncn 107 115 36 43
Virginia vaharn.ncn 75 84 36 40
Washington — Oregon =~ woharn.ncn 116 125 41 50
West Virginia wvharn.ncn 77 84 36 41
Wisconsin wiharn.ncn 86 94 42 48
Wyoming wyharn.ncn 104 112 41 46

* Guam and American Samoa never went through the intermediate step of island datum to
NADS3. Those islands were adjusted directly from their old island datums (Guam 1963 and
American Samoa 1962) to HPGN. Consequently, positions computed on the island datums are
considered to be NADS83 for the input/output purposes.

There are no HARN grid files for Alaska, North Carolina, and South Carolina.

Troubleshooting

Commonly encountered problems and solutions:

Problem

Solution

ProLatNet.dll was not found.

The file prolatnet.dll was not found by the application. The
file prolatnet.dll should be located in the same directory as
the applications executable file or in sub-folder.

The file ProLatNet.dll does not need to be registered. It is
generally found relative to the executable.

Error: -38 Failed to load
NAD27-83 correction file.

The conversion requires a datum shift and ProLat was not
able to find a NADCON grid file to perform the shift. There
are two common reasons for this error.

1. The NADCON grid shift files could not be found.

2. The given coordinate point is outside the boundaries
of the NADCON grid shift files. Check the
coordinates, units, parameters, and lat-long / long-lat
ordering. A negative value is needed for West and
South directions. If using GetDMS, check that the
proper coordinate syntax is used.

The return values are infinite
(maximum possible value)

The algorithms detected a problem and returned the
maximum possible double float value so that the results
would not be inadvertently used. Check the ProLatErrNo
and ProLatErrMsg for additional details. Check the
parameters, units, and lat-lon / lon-lat order. A negative
value is needed for West and South directions.

The values are close but a
little off from my reference
control points.

It is highly recommended to use reference control points in
any conversion project. This allows you to make sure
ProLat is configured properly for the desired conversion.
For example, in lat-lon to State Plane, a control point would
have a coordinate in lat-lon format and its known
corresponding coordinate in State Plane format. A ProLat
conversion should match very closely — within 1 cm or mm
depending on the type of conversion.

If you suspect it does not match, check the parameters
carefully. Common problems include units, lat-lon / lon-lat
order, datum shift needed, negative value is needed for West
and South directions, etc.

81

License

ProLat for .Net may be used on one single computer within your company without charge. This
is typically a development computer. Each additional computer requires a purchased license of
ProLat for .Net regardless how how the software is transmitted to that computer. If ProLat for

Net is used on a server PC that delivers services to other PCs, a ProLat for .Net server license is

required.

82

References

1. http://www.ngs.noaa.gov/faq : National Geodetic Survey — Frequently Asked Questions

2. Snyder, Map Projections — A Working Manual, U.S. Geological Survey Professional Paper
1395.

3. Gerald Evenden, Cartographic Projection Procedures for the UNIX Environment — A User’s
Manual, USGS 1995

83

